

31 January 2025

Quarterly Activities Report for the period ended 31 December 2024

St George Mining Limited (ASX: SGQ) ("St George" or "the Company") is pleased to present its Quarterly Activities Report for the three-month period ended 31 December 2024.

ARAXA – Acquisition of Advanced Araxá Niobium-REE Project

On 7 January 2025, St George announced that the Company and the seller of the Araxá Project had entered into a variation of the binding conditional agreement initially signed on 3 August 2024 to allow additional time up to 15 March 2024 to complete the acquisition; see our ASX Release dated 7 January 2025 'Araxá Niobium-REE Project — Acquisition Locked-In'. The acquisition is expected to be completed in Q1 2025.

During the December quarter, St George made a number of major announcements regarding initiatives that will support successful project delivery post-acquisition. These include:

- MoU with global trading house Memorandum of Understanding (MoU) entered into with SKI
 Hong Kong Limited (SKI), a global trading house specialising in ferroniobium and other ferroalloys, pursuant to which the parties will negotiate marketing, offtake and financing for the
 Araxá Project; see ASX Release dated 21 October 2024 'Strategic MoU and Offtake for Araxá'.
- MoU to Fast-track Government Approvals MoU with the State of Minas Gerais pursuant to
 which the State will assist to expedite the regulatory approvals for the Araxá Project in
 consideration of St George's investment and support in establishing domestic supply chains for
 critical metals; see ASX Release dated 31 October 2024 'MoU to Fast-Track Approvals for Araxá
 Project'.
- Leading Environmental Advisor Alger Consultoria e Assessoria Juridica, a leading Brazilian
 environmental consultancy, was appointed to assist with socio-environmental and cultural
 heritage matters for the licensing of the Araxá Project; see ASX Release dated 18 November
 2024 'Environmental Advisor for the Araxá Niobium-REE Project'.
- Downstream Processing Partnerships St George signed two MoU's with SENAI, Latin America's largest scientific agency; see ASX Release dated 12 December 2024 'Downstream Partnerships for Niobium and Rare Earths'. The agreements deal with the following downstream projects and underscore the potential significant role of the Araxá Project in Brazil's critical metals supply chains:
 - Cooperation on research, development and production of rare earths magnets at the Lab Fab permanent magnet facility established by SENAI and operated by FIEMG
 - Cooperation on the development of sustainable processing for niobium and rare earths products

St George announced further project initiatives in January 2025:

- Technical Co-venture with scientific agencies collaboration agreement signed with EMBRAPII and SENAI whereby these Government funded scientific agencies will work with St George to develop a sustainable process for ferroniobium and rare earths products; see ASX Release dated 9 January 2025 'Niobium and REE Processing Co-venture for Araxá'.
- Offtake and development collaboration with Steelmaking Giant Liaoning Fangda Group one of the world's largest steelmaking enterprises and heavy mine equipment manufacturers entered into a MoU with St George to negotiate terms to potentially work together on the development of the Araxá Project; see ASX Release dated 15 January 2025 'Steelmaking Giant signs Offtake and Development MoU'.

DESTINY PROJECT

The Destiny Project is located in the Eastern Goldfields region of Western Australia.

A drilling programme was completed at the Destiny Project during the December quarter. Drilling was carried out on tenements E15/1831, E15/1915 and E15/1798 with a total of 877 metres drilled in five reverse circulation (RC) holes and 203 metres in two aircore (AC) holes. A total of 485 samples were collected.

The primary objective of the drill programme was to investigate geophysical anomalies at C1 and C3 to determine whether the targets were related to carbonatites or mafic intrusions.

The drilling successfully addressed this question, confirming the anomalies as mafic/ultramafic intrusions. This outcome provides valuable insights into the geological framework of the area, helping to refine the exploration strategy moving forward.

Drilling and subsequent downhole electromagnetic (DHTEM) surveys highlighted moderate-to-high conductance features in holes WGRC0002B (which was targeting the C1 geophysical anomaly) and WGRC0005, indicating potential for substantial sulphide mineralisation.

Elevated copper grades, up to 0.17% Cu from hole WGRC0005 are coincident with these conductors.

Table 1 below lists significant intercepts in WGRC0005. For full details of drill holes and assay results see Table 6 and 7 at the end of this report.

Additional geophysical surveys and targeted follow-up drilling at C1 and C3 are planned to refine geological models and better define sulphide potential.

Further review of exploration results will be completed ahead of planning the next drill programme at Destiny.

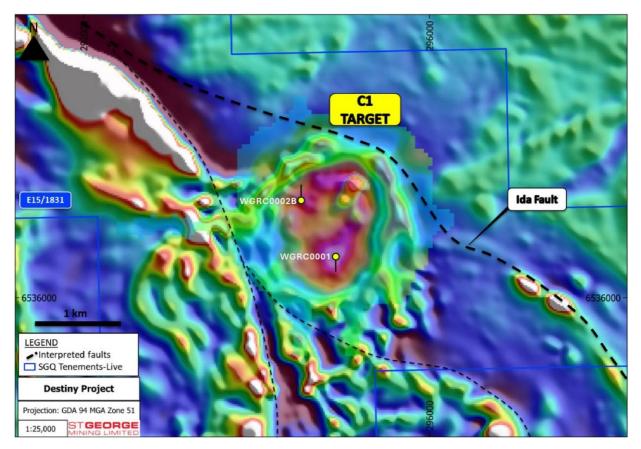


Figure 1: Map of Target C1 with current drilling over Bouguer Residual Gravity Results overlaying TMI airborne magnetics

Table 1: Significant intercepts from October 2024 Destiny Drilling Programme (>300 ppm Cu).

Hole ID	From	То	Interval		Cu %	Ni ppm	Pb ppm	Zn ppm	S %
WGRC0005	87	90	3	@	0.11	143	9	79	11
WGRC0005	88	90	2	Incl.	0.14	137	9	67	14
WGRC0005	99	100	1	@	0.10	44	27	42	7
WGRC0005	104	105	1	@	0.08	37	9	74	6
WGRC0005	107	110	3	@	0.17	60	3	94	9
WGRC0005	108	109	1	Incl.	0.14	77	7	63	13
WGRC0005	114	118	4	@	0.15	86	8	55	15
WGRC0005	114	117	3	Incl.	0.04	46	16	66	7
WGRC0005	128	130	2	@	0.04	55	7	65	8
WGRC0005	140	143	3	@	0.05	59	20	90	4

LITHIUM STAR- Myuna Rocks

The Myuna Rocks Project is located 5km north of the Mt Cattlin Lithium Mine near Ravensthorpe in Western Australia.

An aircore (AC) drilling program was completed by St George at Myuna Rocks in November 2024. Drilling was carried out on tenements E74/708, E74/709, E74/729, E74/789 and E74/790, with the primary objective of assessing in-situ geochemical material, testing for lithium suite prospectivity, and evaluating base metal potential.

The drilling program successfully recovered geochemical samples from beneath thick lacustrine deposits and road base material, with hole depths ranging from 5 to 10 metres. The campaign also targeted sedimentary and greenstone sequences interpreted from geophysical data, aiming to uncover signs of lithium suite elements and base metal mineralisation.

- Lithium Suite Potential: The program identified lithium suite element outliers, with encouraging correlations between caesium, tantalum, and lithium. While overall anomalism was modest and no significant intercepts were returned from drilling, these findings highlight the potential for pegmatite-related mineralisation and provide a valuable baseline for refining exploration strategies.
- **Titanium Results**: Titanium concentrations were observed across the project area, with notable values up to 17,300 ppm in drillhole MRAC0221. Although below economic thresholds, these results confirm a widespread titanium presence, potentially indicative of a larger mineral system. This adds an important dimension to the project's geological understanding and suggests further assessment of titanium mineralisation could be valuable.
- Base Metal Potential: Low-level anomalism in copper, lead, and palladium was detected within sedimentary packages in contact with a late-stage granite intrusion. Copper concentrations peaked at 150 ppm on drillhole MRAX0089 highlighting some potential for follow-up exploration of these targets.

Table 2 lists significant titanium intercepts in MRAC008. For full details of the drill holes and assay results see Tables 8 and 9 at the end of this report.

Table 2: Elevated values of Ti intercepted from November 2024 Myuna Rocks Drilling (>10,000 ppm Ti).

Hole ID	From	То	Interval		Ti ppm
MRAC0008	2	6	4	@	10500
MRAC0050	5	9	4	@	10600
MRAC0064	6	9	3	@	11000
MRAC0119	2	3	1	@	15200
MRAC0185	2	6	4	@	11400
MRAC0221	5	6	1	@	17300

The Myuna Rocks drilling program has provided valuable insights into the area's geological potential. The lithium suite and titanium findings suggest areas of interest that could guide targeted follow-up exploration. Further work, such as detailed geochemical surveys and targeted drilling is currently in planning and will help to refine targets and enhance understanding of the mineral systems in the region.

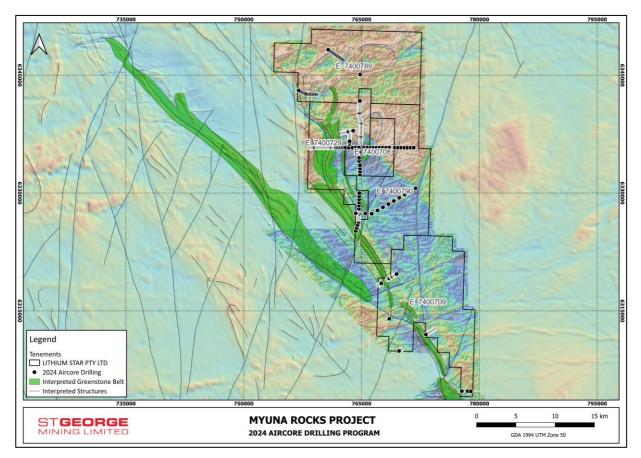


Figure 2: Map of Myuna Rocks aircore drilling over TMI airborne magnetics and regional interpreted geology

LITHIUM STAR- Bunningonia

The Buningonia Project is located in the south-east Yilgarn, approximately 25km east of the Bald Hill Lithium Mine.

St George Mining carried out an auger drilling program at the Bunningonia Project in November 2024, collecting 741 samples using handheld auger and Ultrafine+® assay method for analysis. The primary goals included identifying lithium-suite anomalism in ultramafic contacts and extending historical geochemical coverage into tenement E28/2962.

Results were highly encouraging, revealing a noteworthy lithium anomaly, up to 145 ppm Li_2O (see Table 3) at the western contact of the ultramafic unit, along with promising gold and pathfinder element trends at the eastern contact of the same unit.

Notably, the survey also confirmed coincident elevated levels of cesium and rubidium in over 130 samples from the program, further enhancing confidence in the area's lithium (LCT) mineralisation potential.

Table 3: LTC suite assays results from Ultrafines+\$ (> 100 ppm Li₂O).

Sample ID	Easting	Northing	Туре	Li₂O ppm	Cs ppb	Rb ppb	Sn ppb
BNS00313	475000	6495800	Auger	108	3.23	51.30	1.18
BNS00345	475150	6496200	Auger	110	4.60	74.00	1.58
BNS00346	475250	6496200	Auger	107	5.06	82.30	1.79
BNS00348	475450	6496200	Auger	113	4.86	85.10	1.90
BNS00361	476750	6496200	Auger	127	4.51	67.10	1.59
BNS00362	476850	6496200	Auger	118	3.87	57.50	1.41
BNS00419	476250	6497000	Auger	116	3.99	76.70	1.66
BNS00422	476550	6497000	Auger	112	3.93	80.70	1.56
BNS00423	476650	6497000	Auger	120	3.87	67.80	1.55
BNS00440	478350	6497000	Auger	115	2.29	60.60	1.17
BNS00458	475400	6497400	Auger	114	5.03	84.50	1.56
BNS00460	475600	6497400	Auger	106	4.55	77.00	1.46
BNS00464	476000	6497400	Auger	115	5.36	83.50	1.83
BNS00473	476900	6497400	Auger	109	5.19	81.00	2.03
BNS00529	477750	6497800	Auger	117	4.38	81.20	1.80
BNS00547	474800	6498200	Auger	145	3.88	78.10	1.54
BNS00548	474900	6498200	Auger	107	3.93	76.30	1.56
BNS00549	475000	6498200	Auger	111	4.33	82.80	1.66
BNS00626	477950	6498600	Auger	121	2.85	50.00	1.09
BNS00664	477000	6499000	Auger	109	3.07	49.40	1.55
BNS00707	476550	6499400	Auger	112	4.25	76.10	1.76
BNS00743	475400	6499800	Auger	106	5.71	85.50	1.95
BNS00838	475400	6500600	Auger	107	4.40	72.60	1.77
BNS00847	476300	6500600	Auger	107	3.35	67.00	1.36
BNS00854	477000	6500600	Auger	116	5.01	84.30	2.07
BNS00905	477350	6501000	Auger	111	2.58	46.20	0.93
BNS00930	475100	6501400	Auger	125	3.22	46.30	1.27
BNS00931	475200	6501400	Auger	127	4.02	60.90	1.56
BNS00932	475300	6501400	Auger	110	3.35	50.90	1.26
BNS01007	474900	6502200	Auger	106	3.77	60.40	1.29
BNS01085	476400	6503000	Auger	107	5.33	97.40	1.95

Table 4: Gold	cuito accave	regulte from	I Iltrafinac_@	(>15 ppb Au).
Table 4: Gold	Suite assavs	results from	Ultraffines+®	(>15 DDD AU).

Sample ID	Easting	Northing	Туре	Au ppb	Ag ppb	As ppb	Pb ppb	Pd ppb	Pt ppb
BNS00342	474850	6496200	Auger	15	50	8700	10300	3000	2000
BNS00502	475050	6497800	Auger	19	30	14300	8200	5000	2000
BNS01020	476200	6502200	Auger	16	20	11900	14300	1000	3000
BNS01021	476300	6502200	Auger	16	20	17600	9500	3000	2000
BNS01029	477100	6502200	Auger	15	70	5600	9600	2000	-
BNS01035	477700	6502200	Auger	19	40	6800	9700	1000	1000
BNS01058	476850	6502600	Auger	15	50	14500	9800	3000	2000

Based on these positive findings and strong exploration potential, a maiden air core drilling program is now planned for Q2 2025, targeting major faults and shear zones to refine understanding of the mineralisation. Deeper drilling and geophysical follow-up are also intended to further delineate potential lithium, gold, and PGE targets. Overall, the Bunningonia Project demonstrates exciting prospects for ongoing exploration.

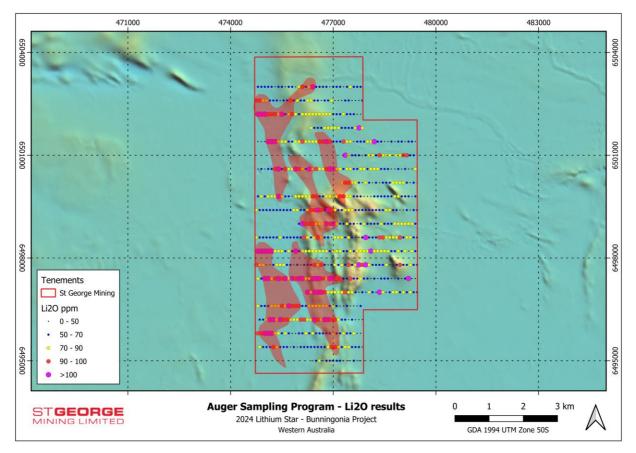


Figure 3: Anomalous Li2O results (red shapes) from Bunningonia Auger Sampling Program over Airborne Magnetics

LITHIUM STAR-Lindville

The Lindville Project is located the north-west Yilgarn.

A stream sediment sampling programme was conducted by St George Mining in the December quarter. Sampling was carried out on tenements E59/2649, E59/2648 and E59/2894, and has delivered highly encouraging results that reinforce the high prospectivity of the area. The program was designed to identify tantalum and lithium suite mineralisation through targeted stream sediment sampling, focusing on trap sites where dense elements settle.

Key highlights from the sampling programme:

- Considerable Tantalum Anomalism: Results revealed tantalum concentrations up to 44.4ppm from sample LNSS0047, a significant value that indicates a notable upstream source. Seven anomalous samples lie within the southern tenement (E59/2648), confirming it as the most prospective area.
- Alignment with Historical Data: Recent findings align with the northeast-trending structural
 orientation of mineralised pegmatites historically mined at the Rising Fast Bore Pegmatite, located
 approximately 10 km northeast of the Company's stream sediment anomalies and outside the
 Company's tenement boundaries. This artisanal mine, worked for beryl gems between 1959 and
 1962, produced a total of 4.1 tons of beryl. Given that beryl mineralisation is frequently associated
 with fertile pegmatites, these deposits further underscore the region's strong potential for lithiumbearing pegmatites within the southern tenement.
- Lithium Suite Anomalism: Elevated concentrations of lithium-suite elements in stream sediment samples—such as 44.4 ppm Ta (Sample LNSS0047), 15 ppm Ta (Sample LNSS0107) and 118 ppm Li₂O (Sample LNSS0074) strongly suggest the potential presence of lithium-bearing pegmatites within the project area, particularly in the southern tenements. The elevated values are significant because they likely originate from weathering of nearby pegmatitic sources enriched in lithium or lithium pathfinder minerals, highlighting the area's exploration potential for economic deposits.

Table 5: Highlighted assays results from Linville stream sediments (>100 ppm Li₂O and/or >5 ppm Ta)

Sample ID	Easting	Northing	Li₂O ppm	Ta ppm	Cs ppm
LNSS0034	519716	6885361	105.497	4.8	5.2
LNSS0035	518990	6885531	30.142	5.6	8.2
LNSS0044	520705	6879704	105.497	3.1	5.4
LNSS0045	520799	6879757	45.213	6.8	4.1
LNSS0047	520872	6879649	45.213	44.4	4.4
LNSS0048	520872	6879649	105.497	2.3	5.5
LNSS0049	519828	6879194	38.754	12.8	3.5
LNSS0050	519828	6879194	75.355	6.3	4.1
LNSS0051	520059	6879329	40.907	9.9	3.7
LNSS0053	521748	6874646	38.754	5.5	3.9
LNSS0062	518817	6873212	129.18	6	8.1
LNSS0069	516918	6872672	38.754	11	4.7
LNSS0070	516918	6872672	75.355	7.8	5.5
LNSS0074	516322	6874168	118.415	4.3	5.3

LNSS0075	516237	6874043	60.284	5.3	4.8
LNSS0076	516237	6874043	94.732	9.1	4.5
LNSS0087	526115	6894176	32.295	6.4	2.1
LNSS0096	522097	6885099	103.344	2.3	3.7
LNSS0104	512060	6881088	107.65	2.3	5.8
LNSS0107	514086	6877774	88.273	15.2	5.7
LNSS0108	514086	6877774	105.497	6.1	5.3
LNSS0108	514086	6877774	105.497	6.1	5.3
LNSS0110	514569	6875023	79.661	14	6.3
LNSS0112	514475	6875061	71.049	6.7	4.5

The detailed structural and geochemical interpretation of pegmatites within the southern tenement (E59/2648) will be used to refine target areas and plan follow-up exploration.

Targeted rock chipping and mapping will also be undertaken to enhance the understanding of the mineralisation potential, followed up by drilling of defined targets.

The Lindville project demonstrates substantial multi-commodity potential. The considerable tantalum anomalism, combined with the mineralised pegmatites associated with beryl content, reinforces the exploration potential of the project.

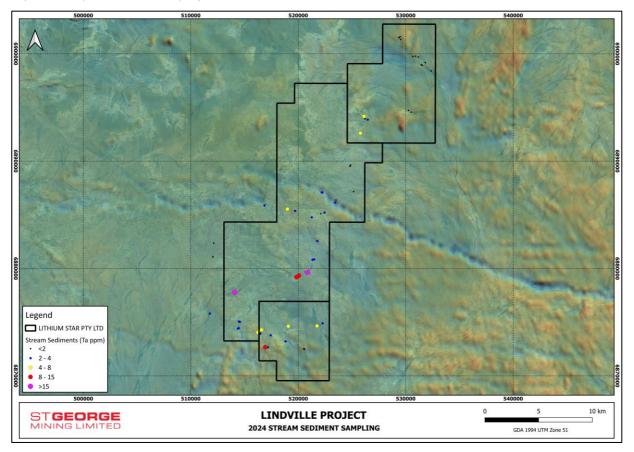


Figure 4: Map of Lindville Stream Sediment Samples over TMI airborne magnetics overlaying satellite image.

Page 10 of 38

LITHIUM STAR- Split Rocks

The Split Rocks Project is located in the Southern Cross region of Western Australia and is about 28km north of the Earl Grey Lithium Mine.

An auger sampling programme was conducted by St George Mining across tenements E77/2869 and E77/2871. The primary objective was to identify lithium suite anomalism beneath deep transported cover across the project area using an auger sampling approach tailored to the terrain.

Program Overview and Results

The program utilised handheld auger and Ultrafine+® assay method for analysis, deployed via quad bikes, to efficiently collect geochemical samples from beneath thick transported sands and scrub. A total of 932 samples were collected, with sampling lines strategically designed to maximise coverage.

The program delivered valuable insights into the area's lithium suite potential and broader geochemical characteristics.

- Lithium Suite Anomalism: Probability analyses of lithium suite elements (Li, Cs, Ta, Sn) revealed multiple low-level anomalies within interpreted greenstone units. Lithium showed a mean concentration of 51.5 ppm, with 14 outliers exceeding the threshold of 117 ppm.
 - Notably, anomalism appears to coincide with a SW-NE trending fault zone in tenement E77/2871, suggesting structural controls on potential mineralisation. While concentrations are modest, the identified fault zone provides a clear focus for follow-up exploration.
- **Geochemical Correlations**: Weak positive correlations were observed between lithium and key pathfinders (Cs, Rb, and Sn). These correlations, combined with spatial alignment along the fault splay, define a target zone for further investigation.
- **Granite Fertility**: The identified lithium suite anomalism primarily overlaps with granite outcrops, underscoring their potential fertility for pegmatite-related mineralisation.

A follow-up program has been planned to advance the exploration of the identified target zone along the SW-NE trending fault in E77/2871. Aircore drilling is planned to test basement geology and better define the subsurface controls on anomalism.

Additionally, a higher-resolution geophysical survey across this zone has been considered to refine structural targets and enhance the understanding of mineralisation potential.

The Split Rocks auger sampling programme has successfully identified a clear exploration target while providing valuable geochemical data for the broader project area. The results highlight the potential for pegmatite-related lithium mineralisation in structurally controlled zones.

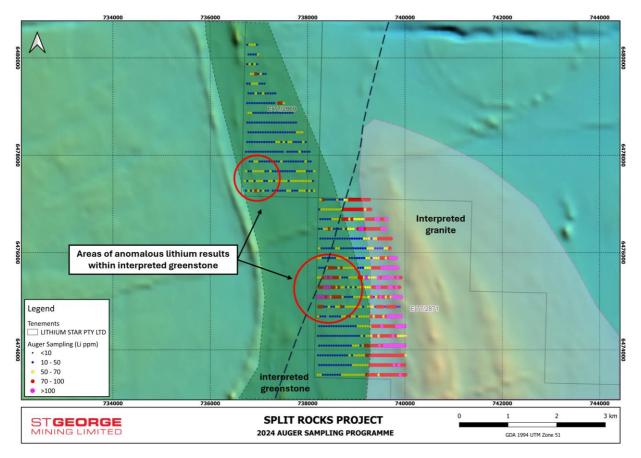


Figure 5: Map of Split Rocks auger samples over TMI airborne magnetics and interpreted geology.

MT ALEXANDER PROJECT – Surface sampling and drilling preparation

The Mt Alexander Lag Sample Survey, conducted by St George Mining, was undertaken across tenements E29/0638 and E29/0962. The programmes objectives were to test for a potential continuation of the Bottle Creek mineralised trend – Bottle Creek is an operating gold mine 20 km south of the Mt Alexander Project in similar structural settings – as well as to map lithology and structures to assist in identifying sediment packages with potential to host gold ore bodies.

Program Overview and Results:

The survey collected 909 lag samples on a tightly spaced grid pattern, with a focus on capturing surface material representative of the geochemical environment. The field team recorded colour and terrain features to provide additional geological context, while QAQC protocols ensured the precision and reliability of results.

- Gold Anomalism: Anomalism in gold was observed, with a maximum concentration of 110 ppb from samples MAL00533. Four out of six anomalous gold results were located on the western limb of a ridge, likely associated with sedimentary lenses at the base of basalt flows. These results suggest structurally controlled mineralisation following an NNW-SSE trend.
- Pathfinders: Pathfinder elements, including arsenic (As), molybdenum (Mo), palladium (Pd), and silver (Ag), exhibited limited correlation between individual samples but consistently aligned with

the broader NNW-SSE structural trend. This alignment supports the potential for fault or shear-hosted mineralisation. Highlight values include 2,500 ppb Ag, 887,000 ppb As, 10,500 ppb Mo, and 10,000 ppb Pd (see Table 13 at the end of this report).

A second phase of exploration has been planned to build on the results of the lag sampling survey. This will include high-resolution geochemical sampling along the full strike of the basal basalt contact to isolate targets associated with sediment lenses. This approach is expected to refine exploration targets and reduce the cost of subsequent drilling programs.

Targeted follow-up drilling will focus on the identified sedimentary lenses and structurally controlled zones of gold anomalism, testing basement geology and mineralisation potential.

This survey underscores St George's strategic approach to exploration, combining cost-efficient methodologies with robust geochemical analysis to identify and refine high-potential targets effectively.

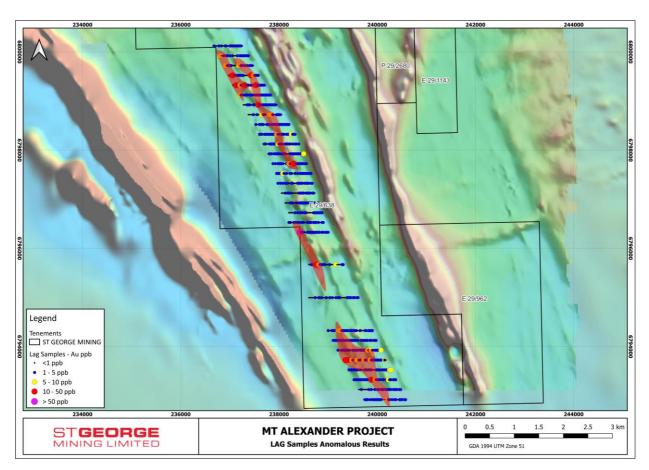


Figure 6: Anomalous gold results (red shapes) along the Interpreted Bottle Creek Trend over Airborne Magnetics

OTHER PROJECTS

No significant activities were conducted at the Company's other projects during the quarter – the Paterson Project and the Ajana Project. Further field activities are being planned for Paterson and Ajana for 2025 with details to be announced once work programmes are finalised.

CORPORATE

On 5 December 2024, the Company announced a \$3,000,000 capital raising via a placement of fully paid ordinary shares to institutional, sophisticated and professional investors to provide working capital and funding for exploration at its existing projects (**Placement**).

The Placement comprised the issue of the following securities:

- a) 150,000,000 ordinary shares in the capital of St George at a price per share of A\$0.02 (the **Placement Shares**); and
- b) 75,000,000 options to acquire ordinary shares in St George, being one free-attaching option for every two shares subscribed for and issued, with each option having an exercise price of A\$0.04 and an expiry date of two years after the date of issue (**Placement Options**).

On 7 January 2025, St George announced that it had received firm commitments from investors to raise new funds of \$20 million for application towards acquisition costs, exploration expenses and working capital for the Araxá niobium-REE Project. These new funds replace the proposed equity raising announced on 6 August 2024.

A general meeting of St George shareholders has been scheduled for 18 February 2025 at which approval for the capital raising and other payments to complete the acquisition of the Araxá Project will be sought.

APPENDIX 5B:

An Appendix 5B – Quarterly Cash Flow Report for the quarter ended 31 December 2024, accompanies this Activities Report.

St George provides the following information in relation to payments to related parties and their associates, as required by section 6.1 of the Appendix 5B. During the quarter ended 31 December 2024, a total of \$160,000 was paid to the Directors of the Company as remuneration.

TENEMENT INFORMATION:

Details of the Company's tenement holdings are listed below. There were no changes to the tenement holdings during the quarter other than as mentioned below.

Mt Alexander Project:

St George has 100% ownership of six granted Exploration Licences and one Prospecting Licence.

Additionally, Exploration Licence E29/638 is held in joint venture between St George (75%) and IGO Limited (25%).

Page 14 of 38

Lithium Star:

Lithium Star Pty Ltd, held 90% by St George and 10% by Amperex Technology Limited, holds 15 granted Exploration Licences.

Paterson Project:

St George has 100% ownership of one Exploration Licence.

Ajana Project:

St George has 100% ownership of three granted Exploration Licences with two Exploration Licences surrendered during the quarter.

Destiny Project:

St George acquired an option over nine tenements – seven granted Exploration Licences and two in application – as announced in the ASX Release made on 2 February 2023.

In addition, St George holds three granted exploration licences.

Regional Tenements:

St George has 100% ownership of two regional tenements, with one other regional Exploration Licence surrendered during the quarter.

Competent Person Statement:

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves for the Mt Alexander Project, Destiny Project, Myuna Rocks, Bunningonia, Lindville and Split Rocks is based on information compiled by Mr Wanderly Basso, a Competent Person who is a Member of The Australasian Institute of Geoscientists. Mr Basso is employed by St George Mining Limited to provide technical advice on mineral projects, and he holds performance rights issued by the Company.

Mr Basso has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Basso consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

This ASX announcement contains information extracted from the following reports which are available on the Company's website at www.stgm.com.au:

- 27 December 2023 St George Exploration Update
- 17 January 2024 St George Increases Exposure to Ida Fault
- 14 February 2024 Large Lithium Soil Anomalies at Mt Alexander
- 13 March 2024 Lithium Potential Grows at Myuna Rocks
- 6 May 2024 Rare Intrusions to be Drilled at the Destiny Project
- 8 May 2024 Breakthrough Lithium Targets at Mt Alexander
- 3 June 2024 St George Advances Niobium-REE Target

Page 15 of 38

- 18 June 2024 Niobium-REE Target Takes Shape
- 21 October 2024 Strategic MoU and Offtake with Global Metal Trader.
- 31 October 2024 MoU with the State of Minas Gerais to assist fast-tracking of approvals for high-grade niobium-REE Araxa Project in Brazil.
- 5 November 2024 Update on Acquisition of Araxa niobium-REE Project.
- 18 November 2024 St George appoints Leading Environmental Consultancy to advance highgrade niobium-REE Araxa Project.
- 12 December 2024 St George signs partnership for downstream niobium and rare earth processing and production in Brazil.

The Company confirms that it is not aware of any new information or data that materially affects the exploration results included in any original market announcements referred to in this report and that no material change in the results has occurred. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

Authorised for release by the Board of St George Mining Limited.

For further information, please contact:

John Prineas
Executive Chairman
St George Mining
+61 411 421 253
john.prneas@stgm.com.au

Peter Klinger
Media and Investor Relations
Purple
+61 411 251 540
pklinger@purple.au

TENEMENT INFORMATION AS REQUIRED BY LISTING RULE 5.3.3

Other than as detailed in the body of the Quarterly Activities Report and, in the table, below, no tenements, in part or whole, were relinquished, surrendered or otherwise divested during the quarterly period ended 31 December 2024.

MT ALEXANDER:

Tenement ID	Registered Holder	Location	Ownership (%)	Change in Quarter
E29/638	Blue Thunder Resources Pty Ltd	Mt Alexander	75	N/A
E29/548	Blue Thunder Resources Pty Ltd	Mt Alexander	100	N/A
E29/954	Blue Thunder Resources Pty Ltd	Mt Alexander	100	N/A
E29/962	Blue Thunder Resources Pty Ltd	Mt Alexander	100	N/A
E29/972	Blue Thunder Resources Pty Ltd	Mt Alexander	100	N/A
E29/1041	Blue Thunder Resources Pty Ltd	Mt Alexander	100	N/A
E29/1143	Blue Thunder Resources Pty Ltd	Mt Alexander	100	N/A
P29/2680	Blue Thunder Resources Pty Ltd	Mt Alexander	100	N/A

LITHIUM STAR:

Tenement ID	Registered Holder	Location	Ownership	Change in
			(%)	Quarter
E28/2962	Lithium Star Pty Ltd	Buningonia	90	N/A
E28/3232	Lithium Star Pty Ltd	Buningonia	90	N/A
E28/3233	Lithium Star Pty Ltd	Buningonia	90	N/A
E59/2648	Lithium Star Pty Ltd	Lindville	90	N/A
E59/2649	Lithium Star Pty Ltd	Lindville	90	N/A
E59/2894	Lithium Star Pty Ltd	Lindville	90	Granted
E70/5990	Lithium Star Pty Ltd	Carnamah	90	N/A
E74/708	Lithium Star Pty Ltd	Myuna Rocks	90	N/A
E74/709	Lithium Star Pty Ltd	Myuna Rocks	90	N/A
E74/729	Lithium Star Pty Ltd	Myuna Rocks	90	N/A
E74/789	Lithium Star Pty Ltd	Myuna Rocks	90	N/A
E74/790	Lithium Star Pty Ltd	Myuna Rocks	90	N/A
E77/2868	Lithium Star Pty Ltd	Split Rock	90	N/A
E77/2869	Lithium Star Pty Ltd	Split Rock	90	N/A
E77/2870	Lithium Star Pty Ltd	Split Rock	90	N/A
E77/2871	Lithium Star Pty Ltd	Split Rock	90	N/A

Page 17 of 38

PATERSON:

Tenement ID	Registered Holder	Location	Ownership (%)	Change in Quarter
E45/5226	St George Mining Limited	Paterson	100	N/A

AJANA:

Tenement ID	Registered Holder	Location	Ownership (%)	Change in Quarter
E70/5521	St George Mining Limited	Ajana	100	N/A
E70/5522	St George Mining Limited	Ajana	100	N/A
E70/6142	St George Mining Limited	Ajana	100	N/A
E66/0129	St George Mining Limited	Ajana	100	Surrendered
E66/0130	St George Mining Limited	Ajana	100	Surrendered

DESTINY:

Tenement ID	Registered Holder	Location	Ownership (%)	Change in Quarter
E15/1687	Destiny Lithium Pty Ltd	Woolgangie	100	N/A
E15/1976	Destiny Lithium Pty Ltd	Woolgangie	100	N/A
E15/1977	Destiny Lithium Pty Ltd	Woolgangie	100	N/A
E15/1789 ¹	Belres Pty Ltd	Woolgangie	-	-
E15/1831 ¹	Belres Pty Ltd	Woolgangie	-	-
E15/1834 ¹	Belres Pty Ltd	Woolgangie	-	-
E15/1898 ¹	Belres Pty Ltd	Woolgangie	-	-
E15/1899 ¹	Belres Pty Ltd	Woolgangie	-	-
E15/1915 ¹	Belres Pty Ltd	Woolgangie	-	-
E15/1928 ¹	Belres Pty Ltd	Woolgangie	-	-

St George's wholly owned subsidiary, Destiny Nickel Pty Ltd has entered into an option agreement with Belres
Pty Ltd and WA Mining Partners Pty Ltd on 1 February 2023 to acquire a package of tenements in the Eastern
Goldfieds, please see ASX release dated 2 February 2023 "Acquisition of Critical Metals Project". The option
to acquire these tenements has not yet been exercised by St George.

REGIONAL TENEMENTS:

Tenement ID	Registered Holder	Location	Ownership (%)	Change in Quarter
E69/4188	St George Mining Limited	Giles	100	Surrendered
E77/3105	Destiny Lithium Pty Ltd	Split Rock	100	N/A
E77/3205	Destiny Lithium Pty Ltd	Split Rock	100	N/A

Table 6: Destiny Project aircore and RC drilling programme drill hole details

HOLEID	PROJECT	EAST	NORTH	RL	DEPTH	AZIMUTH	DIP	DRILL TYPE
WGAC0082	Destiny	306720	6522879	475	107	270	-60	AC
WGAC0083	Destiny	306801	6522882	467	96	270	-60	AC
WGRC0001	Destiny	294886	6536490	459	118	180	-70	RC
WGRC0002	Destiny	294401	6537038	457	34	0	-60	RC
WGRC0002B	Destiny	294406	6537043	392	268	0	-60	RC
WGRC0003	Destiny	286811	6536672	490	82	270	-60	RC
WGRC0004	Destiny	285642	6536690	490	112	270	-60	RC
WGRC0005	Destiny	279225	6537440	429	263	55	-60	RC

Table 7: Destiny Project aircore and RC drilling programme assays results (>300 ppm Cu).

HOLE ID	PROJECT	SAMPLE ID	FROM	то	Au ppm	Ag ppm	As ppm	Cu ppm	Ni ppm	Pb ppm	Zn ppm
WGRC0005	Destiny	SGDX0000364	87	88	0.002	0.5	-	597	155	10	104
WGRC0005	Destiny	SGDX0000365	88	89	0.004	1.5	1	1790	123	6	70
WGRC0005	Destiny	SGDX0000367	89	90	0.01	2	2	1040	151	12	64
WGRC0005	Destiny	SGDX0000378	99	100	0.002	0.5	-	1030	44	27	42
WGRC0005	Destiny	SGDX0000383	104	105	0.001	1	2	764	13	11	102
WGRC0005	Destiny	SGDX0000384	105	106	-	0.5	-	321	18	28	68
WGRC0005	Destiny	SGDX0000385	106	107	0.001	0.5	-	492	29	7	82
WGRC0005	Destiny	SGDX0000386	107	108	0.003	1	-	962	78	4	46
WGRC0005	Destiny	SGDX0000387	108	109	0.005	2	-	1740	60	3	94
WGRC0005	Destiny	SGDX0000388	109	110	-	1	-	535	25	2	50
WGRC0005	Destiny	SGDX0000394	114	115	0.003	1.5	-	1810	49	13	42
WGRC0005	Destiny	SGDX0000395	115	116	0.008	1.5	-	1570	105	5	66
WGRC0005	Destiny	SGDX0000396	116	117	0.005	1.5	-	1090	105	7	56
WGRC0005	Destiny	SGDX0000397	117	118	0.004	1	-	975	47	4	88
WGRC0005	Destiny	SGDX0000406	125	126	0.004	1	-	416	46	16	66
WGRC0005	Destiny	SGDX0000409	128	129	0.003	1	-	406	51	10	66
WGRC0005	Destiny	SGDX0000410	129	130	0.003	1	-	397	59	3	64
WGRC0005	Destiny	SGDX0000417	140	143	0.002	1	-	491	59	20	90

Table 8: Myuna Rocks Project aircore programme drill hole details

HOLEID	PROJECT	EAST	NORTH	RL	DEPTH	AZIMUTH	DIP	DRILL TYPE
MRAC0001	Myunna Rocks	758356	6335791	384	6	0	-90	AC
MRAC0002	Myunna Rocks	758459	6335791	384	6	0	-90	AC
MRAC0003	Myunna Rocks	758559	6335790	385	6	0	-90	AC
MRAC0004	Myunna Rocks	758657	6335789	384	6	0	-90	AC
MRAC0005	Myunna Rocks	758754	6335790	384	6	0	-90	AC
MRAC0006	Myunna Rocks	758850	6335790	383	6	0	-90	AC
MRAC0007	Myunna Rocks	758958	6335790	381	6	0	-90	AC
MRAC0008	Myunna Rocks	759067	6335789	379	6	0	-90	AC
MRAC0009	Myunna Rocks	759284	6335787	382	6	0	-90	AC
MRAC0010	Myunna Rocks	759386	6335789	383	6	0	-90	AC
MRAC0011	Myunna Rocks	759488	6335789	382	6	0	-90	AC
MRAC0012	Myunna Rocks	759588	6335789	374	9	0	-90	AC
MRAC0013	Myunna Rocks	759687	6335787	374	6	0	-90	AC
MRAC0014	Myunna Rocks	759788	6335788	372	9	0	-90	AC
MRAC0015	Myunna Rocks	759886	6335786	373	6	0	-90	AC
MRAC0016	Myunna Rocks	759986	6335789	372	9	0	-90	AC
MRAC0017	Myunna Rocks	760081	6335786	375	9	0	-90	AC
MRAC0018	Myunna Rocks	760185	6335787	377	6	0	-90	AC
MRAC0019	Myunna Rocks	760283	6335783	375	6	0	-90	AC
MRAC0020	Myunna Rocks	760392	6335784	375	6	0	-90	DD
MRAC0021	Myunna Rocks	760489	6335782	374	6	0	-90	AC
MRAC0022	Myunna Rocks	760583	6335783	375	6	0	-90	AC
MRAC0023	Myunna Rocks	760676	6335783	377	9	0	-90	AC
MRAC0024	Myunna Rocks	760786	6335785	376	6	0	-90	AC
MRAC0025	Myunna Rocks	760887	6335783	376	6	0	-90	AC
MRAC0026	Myunna Rocks	760989	6335781	381	6	0	-90	AC
MRAC0027	Myunna Rocks	761082	6335786	377	6	0	-90	AC
MRAC0028	Myunna Rocks	761180	6335782	377	6	0	-90	AC
MRAC0029	Myunna Rocks	761377	6335783	372	6	0	-90	AC
MRAC0030	Myunna Rocks	761476	6335781	375	9	0	-90	AC
MRAC0031	Myunna Rocks	761576	6335780	378	9	0	-90	AC
MRAC0032	Myunna Rocks	761676	6335780	378	6	0	-90	AC
MRAC0033	Myunna Rocks	761770	6335782	374	6	0	-90	AC
MRAC0034	Myunna Rocks	761973	6335779	374	6	0	-90	AC
MRAC0035	Myunna Rocks	762171	6335781	371	6	0	-90	AC
MRAC0036	Myunna Rocks	762378	6335782	367	6	0	-90	AC
MRAC0037	Myunna Rocks	762581	6335781	361	6	0	-90	AC

Page 20 of 38

HOLEID	PROJECT	EAST	NORTH	RL	DEPTH	AZIMUTH	DIP	DRILL TYPE
MRAC0038	Myunna Rocks	762775	6335782	355	6	0	-90	AC
MRAC0039	Myunna Rocks	762966	6335782	352	6	0	-90	AC
MRAC0040	Myunna Rocks	763373	6335781	346	6	0	-90	AC
MRAC0041	Myunna Rocks	763467	6336184	350	6	0	-90	AC
MRAC0042	Myunna Rocks	763473	6336388	556	6	0	-90	AC
MRAC0043	Myunna Rocks	763476	6336698	363	6	0	-90	AC
MRAC0044	Myunna Rocks	763482	6336799	367	6	0	-90	AC
MRAC0045	Myunna Rocks	763484	6336899	369	9	0	-90	AC
MRAC0046	Myunna Rocks	763498	6337017	307	6	0	-90	AC
MRAC0047	Myunna Rocks	763498	6337097	357	6	0	-90	AC
MRAC0048	Myunna Rocks	763493	6337205	367	6	0	-90	AC
MRAC0049	Myunna Rocks	763494	6337300	369	6	0	-90	AC
MRAC0050	Myunna Rocks	763497	6337401	369	9	0	-90	AC
MRAC0051	Myunna Rocks	763497	6337502	368	9	0	-90	AC
MRAC0052	Myunna Rocks	763501	6337600	369	6	0	-90	AC
MRAC0053	Myunna Rocks	763503	6337700	368	6	0	-90	AC
MRAC0054	Myunna Rocks	763504	6337801	368	9	0	-90	AC
MRAC0055	Myunna Rocks	762363	6337633	352	6	0	-90	AC
MRAC0055A	Myunna Rocks	762268	6337606	352	5	0	-90	AC
MRAC0056	Myunna Rocks	762465	6337651	351	6	0	-90	AC
MRAC0057	Myunna Rocks	762562	6337671	353	4	0	-90	AC
MRAC0058	Myunna Rocks	762656	6337688	354	6	0	-90	AC
MRAC0059	Myunna Rocks	762751	6337707	355	6	0	-90	AC
MRAC0060	Myunna Rocks	762855	6337730	355	6	0	-90	AC
MRAC0061	Myunna Rocks	762955	6337748	355	6	0	-90	AC
MRAC0062	Myunna Rocks	763046	6337769	356	6	0	-90	AC
MRAC0063	Myunna Rocks	763144	6337786	359	6	0	-90	AC
MRAC0064	Myunna Rocks	763241	6337807	361	9	0	-90	AC
MRAC0065	Myunna Rocks	763344	6337821	362	6	0	-90	AC
MRAC0066	Myunna Rocks	763638	6337879	365	6	0	-90	AC
MRAC0067	Myunna Rocks	763729	6337898	367	6	0	-90	AC
MRAC0068	Myunna Rocks	763834	6337918	369	9	0	-90	AC
MRAC0069	Myunna Rocks	763933	6337936	373	6	0	-90	AC
MRAC0070	Myunna Rocks	763472	6336601	349	9	0	-90	AC
MRAC0071	Myunna Rocks	763848	6335783	337	6	0	-90	AC
MRAC0072	Myunna Rocks	764249	6335783	338	6	0	-90	AC
MRAC0073	Myunna Rocks	764651	6335779	338	6	0	-90	AC
MRAC0074	Myunna Rocks	764883	6336392	353	3	0	-90	AC
MRAC0075	Myunna Rocks	764883	6336392	353	5	0	-90	AC

HOLEID	PROJECT	EAST	NORTH	RL	DEPTH	AZIMUTH	DIP	DRILL TYPE
MRAC0076	Myunna Rocks	764890	6336392	356	6	0	-90	AC
MRAC0077	Myunna Rocks	764890	6336392	356	6	0	-90	AC
MRAC0078	Myunna Rocks	764893	6336786	356	6	0	-90	AC
MRAC0079	Myunna Rocks	764898	6336891	354	8	0	-90	AC
MRAC0080	Myunna Rocks	764901	6336988	352	6	0	-90	AC
MRAC0081	Myunna Rocks	764905	6337088	353	6	0	-90	AC
MRAC0082	Myunna Rocks	764880	6337185	358	6	0	-90	AC
MRAC0083	Myunna Rocks	764910	6337293	352	6	0	-90	AC
MRAC0084	Myunna Rocks	764918	6337488	353	6	0	-90	AC
MRAC0085	Myunna Rocks	764922	6337704	354	9	0	-90	AC
MRAC0086	Myunna Rocks	764919	6337689	356	6	0	-90	AC
MRAC0087	Myunna Rocks	764922	6337792	356	6	0	-90	AC
MRAC0088	Myunna Rocks	764925	6337892	358	9	0	-90	AC
MRAC0089	Myunna Rocks	764928	6337985	361	9	0	-90	AC
MRAC0090	Myunna Rocks	764932	6338091	362	6	0	-90	AC
MRAC0091	Myunna Rocks	764934	6338191	361	6	0	-90	AC
MRAC0092	Myunna Rocks	764934	6338286	359	6	0	-90	AC
MRAC0093	Myunna Rocks	764940	6338398	357	6	0	-90	AC
MRAC0094	Myunna Rocks	764940	6338489	357	6	0	-90	AC
MRAC0095	Myunna Rocks	764943	6338595	356	6	0	-90	AC
MRAC0096	Myunna Rocks	764947	6338687	355	6	0	-90	AC
MRAC0097	Myunna Rocks	764947	6338790	352	6	0	-90	AC
MRAC0098	Myunna Rocks	764929	6338887	351	6	0	-90	AC
MRAC0099	Myunna Rocks	764906	6338976	350	5	0	-90	AC
MRAC0100	Myunna Rocks	764851	6339170	348	6	0	-90	AC
MRAC0101	Myunna Rocks	764818	6339285	347	6	0	-90	AC
MRAC0102	Myunna Rocks	764766	6339466	345	6	0	-90	AC
MRAC0103	Myunna Rocks	764766	6339466	343	6	0	-90	AC
MRAC0104	Myunna Rocks	764740	6339561	341	6	0	-90	AC
MRAC0105	Myunna Rocks	764710	6339663	340	6	0	-90	AC
MRAC0106	Myunna Rocks	764707	6339760	340	6	0	-90	AC
MRAC0107	Myunna Rocks	764710	6339854	339	6	0	-90	AC
MRAC0108	Myunna Rocks	764713	6340057	337	6	0	-90	AC
MRAC0109	Myunna Rocks	764713	6340052	337	6	0	-90	AC
MRAC0110	Myunna Rocks	764717	6340158	338	6	0	-90	AC
MRAC0111	Myunna Rocks	764722	6340252	339	6	0	-90	AC
MRAC0112	Myunna Rocks	764728	6340523	339	6	0	-90	AC
MRAC0113	Myunna Rocks	764731	6340621	340	6	0	-90	AC
MRAC0114	Myunna Rocks	764736	6340716	343	9	0	-90	AC

Page 22 of 38

HOLEID	PROJECT	EAST	NORTH	RL	DEPTH	AZIMUTH	DIP	DRILL TYPE
MRAC0115	Myunna Rocks	764737	6340825	343	6	0	-90	AC
MRAC0116	Myunna Rocks	764739	6340916	345	6	0	-90	AC
MRAC0117	Myunna Rocks	764740	6341019	347	6	0	-90	AC
MRAC0118	Myunna Rocks	764745	6341116	347	4	0	-90	AC
MRAC0119	Myunna Rocks	764752	6341227	347	3	0	-90	AC
MRAC0120	Myunna Rocks	764751	6341316	352	6	0	-90	AC
MRAC0121	Myunna Rocks	764752	6341417	351	5	0	-90	AC
MRAC0122	Myunna Rocks	764756	6341520	352	6	0	-90	AC
MRAC0123	Myunna Rocks	764759	6341625	352	6	0	-90	AC
MRAC0124	Myunna Rocks	764760	6341725	352	6	0	-90	AC
MRAC0125	Myunna Rocks	759391	6342555	319	9	0	-90	AC
MRAC0126	Myunna Rocks	759285	6342559	320	9	0	-90	AC
MRAC0127	Myunna Rocks	759194	6342561	320	9	0	-90	AC
MRAC0128	Myunna Rocks	758994	6342563	327	9	0	-90	AC
MRAC0129	Myunna Rocks	758802	6342569	325	9	0	-90	AC
MRAC0130	Myunna Rocks	758594	6342573	325	9	0	-90	AC
MRAC0131	Myunna Rocks	758391	6342580	324	9	0	-90	AC
MRAC0132	Myunna Rocks	758193	6342595	324	9	0	-90	AC
MRAC0133	Myunna Rocks	757987	6342591	327	9	0	-90	AC
MRAC0134	Myunna Rocks	757792	6342653	323	9	0	-90	AC
MRAC0135	Myunna Rocks	757526	6342783	322	9	0	-90	AC
MRAC0136	Myunna Rocks	757345	6342879	321	9	0	-90	AC
MRAC0137	Myunna Rocks	757163	6342967	322	9	0	-90	AC
MRAC0138	Myunna Rocks	756993	6343052	324	9	0	-90	AC
MRAC0139	Myunna Rocks	764845	6344906	332	9	0	-90	AC
MRAC0140	Myunna Rocks	764846	6345004	331	9	0	-90	AC
MRAC0141	Myunna Rocks	764848	6345107	332	9	0	-90	AC
MRAC0142	Myunna Rocks	762576	6346995	323	6	0	-90	AC
MRAC0143	Myunna Rocks	762387	6347125	323	6	0	-90	AC
MRAC0144	Myunna Rocks	762243	6347223	322	9	0	-90	AC
MRAC0145	Myunna Rocks	762387	6347125	323	9	0	-90	AC
MRAC0146	Myunna Rocks	761910	6347454	323	6	0	-90	AC
MRAC0147	Myunna Rocks	761743	6347566	325	2	0	-90	AC
MRAC0148	Myunna Rocks	761583	6347674	329	6	0	-90	AC
MRAC0149	Myunna Rocks	761413	6347792	329	6	0	-90	AC
MRAC0150	Myunna Rocks	761253	6347901	337	9	0	-90	AC
MRAC0151	Myunna Rocks	761082	6348618	335	6	0	-90	AC
MRAC0152	Myunna Rocks	760915	6348134	335	6	0	-90	AC
MRAC0153	Myunna Rocks	760756	6348242	335	6	0	-90	AC

Page 23 of 38

HOLEID	PROJECT	EAST	NORTH	RL	DEPTH	AZIMUTH	DIP	DRILL TYPE
MRAC0154	Myunna Rocks	765310	6335782	330	6	0	-90	AC
MRAC0155	Myunna Rocks	765709	6335783	324	6	0	-90	AC
MRAC0156	Myunna Rocks	766111	6335785	324	6	0	-90	AC
MRAC0157	Myunna Rocks	766512	6335783	328	6	0	-90	AC
MRAC0158	Myunna Rocks	766914	6335782	331	6	0	-90	AC
MRAC0159	Myunna Rocks	767316	6335782	330	6	0	-90	AC
MRAC0160	Myunna Rocks	767716	6335786	324	6	0	-90	AC
MRAC0161	Myunna Rocks	768108	6335786	324	6	0	-90	AC
MRAC0162	Myunna Rocks	768506	6335788	324	6	0	-90	AC
MRAC0163	Myunna Rocks	769242	6335775	324	6	0	-90	AC
MRAC0164	Myunna Rocks	769639	6335782	327	6	0	-90	AC
MRAC0165	Myunna Rocks	770047	6335785	329	6	0	-90	AC
MRAC0166	Myunna Rocks	770437	6335787	333	6	0	-90	AC
MRAC0167	Myunna Rocks	770846	6335783	331	6	0	-90	AC
MRAC0168	Myunna Rocks	771236	6335783	333	6	0	-90	AC
MRAC0169	Myunna Rocks	771642	6335778	333	6	0	-90	AC
MRAC0170	Myunna Rocks	764774	6332369	325	6	0	-90	AC
MRAC0171	Myunna Rocks	764779	6332765	326	6	0	-90	AC
MRAC0172	Myunna Rocks	764797	6333143	324	6	0	-90	AC
MRAC0173	Myunna Rocks	764808	6333551	325	6	0	-90	AC
MRAC0174	Myunna Rocks	764664	6334094	329	6	0	-90	AC
MRAC0175	Myunna Rocks	764674	6334480	328	6	0	-90	AC
MRAC0176	Myunna Rocks	764699	6335183	332	6	0	-90	AC
MRAC0177	Myunna Rocks	777760	6304785	337	6	0	-90	AC
MRAC0178	Myunna Rocks	778907	6304753	345	5	0	-90	AC
MRAC0179	Myunna Rocks	774293	6312672	345	6	0	-90	AC
MRAC0180	Myunna Rocks	734293	6312672	334	6	0	-90	AC
MRAC0181	Myunna Rocks	774210	6312613	334	6	0	-90	AC
MRAC0182	Myunna Rocks	774126	6312553	333	6	0	-90	AC
MRAC0183	Myunna Rocks	774045	6312498	332	6	0	-90	AC
MRAC0184	Myunna Rocks	773963	6312444	330	6	0	-90	AC
MRAC0185	Myunna Rocks	773875	6312387	328	6	0	-90	AC
MRAC0186	Myunna Rocks	773792	6312338	324	6	0	-90	AC
MRAC0187	Myunna Rocks	773704	6312285	322	6	0	-90	AC
MRAC0188	Myunna Rocks	773617	6312231	321	6	0	-90	AC
MRAC0189	Myunna Rocks	773539	6312183	320	6	0	-90	AC
MRAC0190	Myunna Rocks	713452	6312130	318	6	0	-90	AC
MRAC0191	Myunna Rocks	773352	6312069	318	6	0	-90	AC
MRAC0192	Myunna Rocks	773279	6312023	319	6	0	-90	AC

HOLEID	PROJECT	EAST	NORTH	RL	DEPTH	AZIMUTH	DIP	DRILL TYPE
MRAC0193	Myunna Rocks	773189	6311969	318	6	0	-90	AC
MRAC0194	Myunna Rocks	770132	6310103	307	6	0	-90	AC
MRAC0195	Myunna Rocks	770132	6310103	309	6	0	-90	AC
MRAC0196	Myunna Rocks	769953	6309990	309	6	0	-90	AC
MRAC0197	Myunna Rocks	769865	6309940	309	6	0	-90	AC
MRAC0198	Myunna Rocks	769782	6309889	308	6	0	-90	AC
MRAC0199	Myunna Rocks	768828	6313836	326	3	0	-90	AC
MRAC0200	Myunna Rocks	768356	6313874	329	4	0	-90	AC
MRAC0201	Myunna Rocks	768442	6313932	329	4	0	-90	AC
MRAC0202	Myunna Rocks	768540	6313932	329	6	0	-90	AC
MRAC0203	Myunna Rocks	768623	6314041	333	6	0	-90	AC
MRAC0204	Myunna Rocks	767173	6318288	312	4	0	-90	AC
MRAC0205	Myunna Rocks	767344	6318392	309	4	0	-90	AC
MRAC0206	Myunna Rocks	767344	6318392	309	3	0	-90	AC
MRAC0207	Myunna Rocks	767434	6318447	308	3	0	-90	AC
MRAC0208	Myunna Rocks	767525	6318506	308	0	0	-90	AC
MRAC0209	Myunna Rocks	768278	6318966	308	3	0	-90	AC
MRAC0210	Myunna Rocks	768366	6319022	310	3	0	-90	AC
MRAC0211	Myunna Rocks	768453	6319075	313	3	0	-90	AC
MRAC0212	Myunna Rocks	768532	6319124	316	3	0	-90	AC
MRAC0213	Myunna Rocks	768777	6319272	321	4	0	-90	AC
MRAC0214	Myunna Rocks	768862	6319323	322	6	0	-90	AC
MRAC0215	Myunna Rocks	768946	6319374	318	6	0	-90	AC
MRAC0216	Myunna Rocks	769105	6319473	312	6	0	-90	AC
MRAC0217	Myunna Rocks	769196	6319529	307	6	0	-90	AC
MRAC0218	Myunna Rocks	769279	6319575	307	6	0	-90	AC
MRAC0219	Myunna Rocks	769374	6319635	307	6	0	-90	AC
MRAC0220	Myunna Rocks	769450	6319681	305	6	0	-90	AC
MRAC0221	Myunna Rocks	764258	6325177	343	6	0	-90	AC
MRAC0222	Myunna Rocks	764375	6325550	336	6	0	-90	AC
MRAC0223	Myunna Rocks	764499	6325941	333	6	0	-90	AC
MRAC0224	Myunna Rocks	764610	6326323	336	6	0	-90	AC
MRAC0225	Myunna Rocks	764620	6326630	340	6	0	-90	AC
MRAC0226	Myunna Rocks	764621	6326777	340	6	0	-90	AC
MRAC0227	Myunna Rocks	764623	6326845	340	6	0	-90	AC
MRAC0228	Myunna Rocks	764624	6326925	342	6	0	-90	AC
MRAC0229	Myunna Rocks	764630	6327030	346	6	0	-90	AC
MRAC0230	Myunna Rocks	764631	6327138	346	6	0	-90	AC
MRAC0231	Myunna Rocks	764634	6327232	348	6	0	-90	AC

HOLEID	PROJECT	EAST	NORTH	RL	DEPTH	AZIMUTH	DIP	DRILL TYPE
MRAC0232	Myunna Rocks	764638	6327334	349	6	0	-90	AC
MRAC0233	Myunna Rocks	765481	6327393	359	6	0	-90	AC
MRAC0234	Myunna Rocks	766784	6327382	342	6	0	-90	AC
MRAC0235	Myunna Rocks	767020	6327781	338	6	0	-90	AC
MRAC0236	Myunna Rocks	767735	6328193	337	6	0	-90	AC
MRAC0237	Myunna Rocks	768417	6328594	335	6	0	-90	AC
MRAC0238	Myunna Rocks	769100	6328989	340	6	0	-90	AC
MRAC0239	Myunna Rocks	769786	6329389	356	6	0	-90	AC
MRAC0240	Myunna Rocks	770481	6329795	368	6	0	-90	AC
MRAC0241	Myunna Rocks	771172	6330197	379	6	0	-90	AC
MRAC0242	Myunna Rocks	771875	6330601	378	6	0	-90	AC
MRAC0243	Myunna Rocks	764654	6327989	362	6	0	-90	AC
MRAC0244	Myunna Rocks	764669	6328396	361	6	0	-90	AC
MRAC0245	Myunna Rocks	764678	6328808	353	6	0	-90	AC
MRAC0246	Myunna Rocks	764687	6329185	346	6	0	-90	AC
MRAC0247	Myunna Rocks	764699	6329593	337	6	0	-90	AC
MRAC0248	Myunna Rocks	764709	6329993	330	6	0	-90	AC
MRAC0249	Myunna Rocks	764470	6327410	350	20	0	-90	AC
MRAC0250	Myunna Rocks	764371	6327414	347	20	0	-90	AC
MRAC0251	Myunna Rocks	764255	6327416	342	20	0	-90	AC

Table 9: Myuna Rocks Project Aircore drilling sampling assays results (>5,000 ppm Ti).

HOLE ID	PROJECT	SAMPLE ID	FROM	то	Li2O ppm	Ta ppm	Cs ppm	Ti ppm
MRAC0002	MyunaRocks	SGMR0000002	3	6	40	1	1	7200
MRAC0006	MyunaRocks	SGMR0000006	3	6	70	1	1	5300
MRAC0007	MyunaRocks	SGMR0000007	2	6	60	0.5	-	7700
MRAC0008	MyunaRocks	SGMR0000008	2	6	60	1	1	10500
MRAC0010	MyunaRocks	SGMR0000010	3	6	50	1	1	5400
MRAC0023	MyunaRocks	SGMR0000023	5	9	30	1.5	1	6500
MRAC0027	MyunaRocks	SGMR0000028	2	6	40	1.5	1	8400
MRAC0028	MyunaRocks	SGMR0000029	3	6	70	1.5	1	7600
MRAC0029	MyunaRocks	SGMR0000031	3	6	60	1	1	5200
MRAC0030	MyunaRocks	SGMR0000032	3	7	70	1	ı	5600
MRAC0030	MyunaRocks	SGMR0000034	7	9	70	2	1	9300
MRAC0031	MyunaRocks	SGMR0000035	1	4	60	1	3	5500
MRAC0032	MyunaRocks	SGMR0000037	1	4	50	1.5	3	6100

Page 26 of 38

HOLE ID	PROJECT	SAMPLE ID	FROM	то	Li2O ppm	Ta ppm	Cs ppm	Ti ppm
MRAC0032	MyunaRocks	SGMR0000038	4	6	20	2	4	7100
MRAC0042	MyunaRocks	SGMR0000054	2	6	30	1.5	-	9000
MRAC0049	MyunaRocks	SGMR0000062	2	4	60	1	-	5400
MRAC0050	MyunaRocks	SGMR0000064	1	5	70	1	-	5300
MRAC0050	MyunaRocks	SGMR0000065	5	9	30	1	-	10600
MRAC0052	MyunaRocks	SGMR0000069	3	4	60	1	-	5700
MRAC0052	MyunaRocks	SGMR0000070	4	6	40	1	2	6100
MRAC0053	MyunaRocks	SGMR0000071	5	6	50	1.5	1	6700
MRAC0056	MyunaRocks	SGMR0000074	2	6	30	1	1	5600
MRAC0058	MyunaRocks	SGMR0000077	3	6	40	1	-	7400
MRAC0059	MyunaRocks	SGMR0000078	4	6	20	0.5	1	6100
MRAC0060	MyunaRocks	SGMR0000079	4	6	30	1.5	1	8400
MRAC0062	MyunaRocks	SGMR0000081	4	6	50	1	-	6600
MRAC0064	MyunaRocks	SGMR0000083	6	9	40	1	2	11000
MRAC0065	MyunaRocks	SGMR0000084	3	6	60	1	-	5900
MRAC0078	MyunaRocks	SGMR0000101	4	6	60	1	2	5100
MRAC0083	MyunaRocks	SGMR0000106	3	6	70	1	1	7200
MRAC0089	MyunaRocks	SGMR0000114	2	6	10	ı	ı	9900
MRAC0092	MyunaRocks	SGMR0000117	3	6	30	1.5	-	7200
MRAC0093	MyunaRocks	SGMR0000118	3	6	40	1	1	6300
MRAC0094	MyunaRocks	SGMR0000119	3	6	60	1.5	ı	7900
MRAC0095	MyunaRocks	SGMR0000120	3	6	50	1.5	ı	7400
MRAC0096	MyunaRocks	SGMR0000121	3	6	20	1.5	-	9900
MRAC0098	MyunaRocks	SGMR0000126	4	6	50	1	2	5200
MRAC0099	MyunaRocks	SGMR0000127	2	5	100	1	1	5200
MRAC0110	MyunaRocks	SGMR0000140	4	6	40	1	2	7800
MRAC0119	MyunaRocks	SGMR0000150	2	3	40	2	-	15200
MRAC0131	MyunaRocks	SGMR0000163	6	9	20	1.5	-	5800
MRAC0139	MyunaRocks	SGMR0000172	8	9	50	1	-	8200
MRAC0150	MyunaRocks	SGMR0000184	6	9	30	1.5	2	6900
MRAC0151	MyunaRocks	SGMR0000185	2	6	50	1	-	5400
MRAC0152	MyunaRocks	SGMR0000186	3	6	50	1	-	5500
MRAC0161	MyunaRocks	SGMR0000196	4	6	20	1	1	5400
MRAC0178	MyunaRocks	SGMR0000214	4	5	60	1.5	-	5800
MRAC0179	MyunaRocks	SGMR0000215	4	6	40	1.5	-	6700
MRAC0185	MyunaRocks	SGMR0000221	2	6	50	1	-	11400

HOLE ID	PROJECT	SAMPLE ID	FROM	то	Li2O ppm	Ta ppm	Cs ppm	Ti ppm
MRAC0186	MyunaRocks	SGMR0000222	3	6	20	1.5	-	7200
MRAC0211	MyunaRocks	SGMR0000249	2	3	40	2.5	1	6500
MRAC0221	MyunaRocks	SGMR0000259	5	6	10	1	1	17300
MRAC0230	MyunaRocks	SGMR0000270	3	6	30	0.5	11	5500
MRAC0233	MyunaRocks	SGMR0000273	3	6	20	-	-	5300
MRAC0243	MyunaRocks	SGMR0000284	4	6	30	1	-	6000
MRAC0244	MyunaRocks	SGMR0000285	3	6	50	1.5	-	7900
MRAC0249	MyunaRocks	SGMR0000293	10	14	60	1	-	5700
MRAC0249	MyunaRocks	SGMR0000294	14	16	50	1	-	6500
MRAC0249	MyunaRocks	SGMR0000295	16	18	70	1	-	5800
MRAC0250	MyunaRocks	SGMR0000300	10	13	80	2	1	5100
MRAC0250	MyunaRocks	SGMR0000301	13	15	80	1	-	6300
MRAC0250	MyunaRocks	SGMR0000302	15	17	60	1	-	6700
MRAC0250	MyunaRocks	SGMR0000303	17	19	90	0.5	-	9800
MRAC0250	MyunaRocks	SGMR0000304	19	20	80	1	1	7800
MRAC0251	MyunaRocks	SGMR0000308	13	16	80	1	-	5400
MRAC0251	MyunaRocks	SGMR0000309	16	19	120	1	-	5100

Table 10: Bunningonia Project auger sampling programme assays results (>100 ppm Li₂O).

PROJECT	SAMPLE ID	EASTING	NORTHING	SAMPLETYPE	Li2O ppm	Ta ppm	Cs ppm	Sn ppm	Rb ppm
Buningonia	BNS00313	475000	6495800	Auger	107.7	1	3.23	1.18	51.3
Buningonia	BNS00314	475100	6495800	Auger	100.1	-	3.35	1.35	59.6
Buningonia	BNS00315	475200	6495800	Auger	104	0.01	3.55	1.44	64.6
Buningonia	BNS00345	475150	6496200	Auger	109.8	0.01	4.6	1.58	74
Buningonia	BNS00346	475250	6496200	Auger	107.4	0.01	5.06	1.79	82.3
Buningonia	BNS00348	475450	6496200	Auger	113.5	0.01	4.86	1.9	85.1
Buningonia	BNS00349	475550	6496200	Auger	99.9	0.01	4.41	1.56	66.1
Buningonia	BNS00358	476450	6496200	Auger	101.4	0.01	5.07	1.35	83.4
Buningonia	BNS00361	476750	6496200	Auger	126.6	0.01	4.51	1.59	67.1
Buningonia	BNS00362	476850	6496200	Auger	118.2	0.01	3.87	1.41	57.5
Buningonia	BNS00382	475700	6496600	Auger	104.2	0.01	5.46	2.09	120
Buningonia	BNS00419	476250	6497000	Auger	116.5	0	3.99	1.66	76.7
Buningonia	BNS00421	476450	6497000	Auger	104.6	0.01	3.86	1.55	70.4
Buningonia	BNS00422	476550	6497000	Auger	111.7	0.01	3.93	1.56	80.7

Page 28 of 38

PROJECT	SAMPLE ID	EASTING	NORTHING	SAMPLETYPE	Li2O ppm	Ta ppm	Cs ppm	Sn ppm	Rb ppm
Buningonia	BNS00423	476650	6497000	Auger	120.4	0.01	3.87	1.55	67.8
Buningonia	BNS00440	478350	6497000	Auger	115.4	0.01	2.29	1.17	60.6
Buningonia	BNS00454	475000	6497400	Auger	102.3	0	5.45	1.84	79.2
Buningonia	BNS00455	475100	6497400	Auger	102.1	0	4.73	1.53	72.4
Buningonia	BNS00457	475300	6497400	Auger	99.7	0	5	1.52	78.9
Buningonia	BNS00458	475400	6497400	Auger	113.7	0	5.03	1.56	84.5
Buningonia	BNS00460	475600	6497400	Auger	106.1	0	4.55	1.46	77
Buningonia	BNS00462	475800	6497400	Auger	100.3	0	5.23	1.68	80.5
Buningonia	BNS00464	476000	6497400	Auger	114.5	0	5.36	1.83	83.5
Buningonia	BNS00465	476100	6497400	Auger	103.1	0.01	5.16	1.72	82.4
Buningonia	BNS00468	476400	6497400	Auger	102.5	0.01	4.87	1.55	77.5
Buningonia	BNS00469	476500	6497400	Auger	100.1	0.01	5.54	1.96	89.3
Buningonia	BNS00470	476600	6497400	Auger	104.2	0.01	4.91	1.65	83.5
Buningonia	BNS00473	476900	6497400	Auger	108.9	0.01	5.19	2.03	81
Buningonia	BNS00474	477000	6497400	Auger	104.4	0.01	4.54	1.52	65.9
Buningonia	BNS00496	479200	6497400	Auger	103.8	0.01	2.42	0.97	49.5
Buningonia	BNS00529	477750	6497800	Auger	117.3	0	4.38	1.8	81.2
Buningonia	BNS00531	477950	6497800	Auger	102.9	0	5.22	2.02	87.6
Buningonia	BNS00547	474800	6498200	Auger	144.9	0.01	3.88	1.54	78.1
Buningonia	BNS00548	474900	6498200	Auger	107.4	0.01	3.93	1.56	76.3
Buningonia	BNS00549	475000	6498200	Auger	111.3	0	4.33	1.66	82.8
Buningonia	BNS00550	475100	6498200	Auger	102.3	0	4.23	1.56	78.4
Buningonia	BNS00551	475200	6498200	Auger	100.1	0	3.61	1.3	59.4
Buningonia	BNS00558	475900	6498200	Auger	100.5	0.01	3.93	1.91	64.2
Buningonia	BNS00580	478100	6498200	Auger	105.5	0.01	4.68	1.78	88.9
Buningonia	BNS00626	477950	6498600	Auger	120.8	0.01	2.85	1.09	50
Buningonia	BNS00655	476100	6499000	Auger	105.5	0.01	4.35	1.53	74.5
Buningonia	BNS00656	476200	6499000	Auger	99.3	0.01	4.57	1.62	82.9
Buningonia	BNS00662	476800	6499000	Auger	102.5	0	3.4	1.25	52.1
Buningonia	BNS00663	476900	6499000	Auger	99.7	0	2.96	1.11	49.2
Buningonia	BNS00664	477000	6499000	Auger	108.7	0.01	3.07	1.55	49.4
Buningonia	BNS00707	476550	6499400	Auger	111.7	0	4.25	1.76	76.1
Buningonia	BNS00710	476850	6499400	Auger	103.6	0	1.62	0.69	28.6
Buningonia	BNS00743	475400	6499800	Auger	106.4	0	5.71	1.95	85.5
Buningonia	BNS00838	475400	6500600	Auger	106.8	0.01	4.4	1.77	72.6
Buningonia	BNS00843	475900	6500600	Auger	105.5	0	2.67	1.08	47.6

PROJECT	SAMPLE ID	EASTING	NORTHING	SAMPLETYPE	Li2O ppm	Ta ppm	Cs ppm	Sn ppm	Rb ppm
Buningonia	BNS00844	476000	6500600	Auger	99.5	0	2.97	1.28	58.1
Buningonia	BNS00847	476300	6500600	Auger	106.8	0	3.35	1.36	67
Buningonia	BNS00853	476900	6500600	Auger	105.5	0	4.27	1.55	72.5
Buningonia	BNS00854	477000	6500600	Auger	115.6	0	5.01	2.07	84.3
Buningonia	BNS00905	477350	6501000	Auger	110.7	0	2.58	0.93	46.2
Buningonia	BNS00930	475100	6501400	Auger	125.3	0	3.22	1.27	46.3
Buningonia	BNS00931	475200	6501400	Auger	127.2	0	4.02	1.56	60.9
Buningonia	BNS00932	475300	6501400	Auger	110	0	3.35	1.26	50.9
Buningonia	BNS00947	476800	6501400	Auger	103.6	0	3.69	1.45	54.2
Buningonia	BNS00961	478200	6501400	Auger	100.5	0	4.57	1.62	92.5
Buningonia	BNS01004	477750	6501800	Auger	105.3	0	4.2	1.53	71.3
Buningonia	BNS01006	474800	6502200	Auger	104.6	0	3.24	1.13	57.3
Buningonia	BNS01007	474900	6502200	Auger	106.1	0	3.77	1.29	60.4
Buningonia	BNS01008	475000	6502200	Auger	102.5	0	3.29	1.17	53.2
Buningonia	BNS01013	475500	6502200	Auger	103.1	0	3.6	1.22	60
Buningonia	BNS01085	476400	6503000	Auger	106.8	0	5.33	1.95	97.4

Table 11: Lindville Project stream sediment sampling assays results (>100 ppm Li_2O and/or >5 ppm Ta).

PROJECT	SAMPLE ID	EASTING	NORTHING	TYPE	FRACTION	Li2O ppm	Ta ppm	Cs ppm	Rb ppm
Lindville	LNSS0034	519716	6885361	Stream	-200µm	105	5	5	185
Lindville	LNSS0035	518990	6885531	Stream	+200μm	30	6	8	303
Lindville	LNSS0044	520705	6879704	Stream	-200µm	105	3	5	152
Lindville	LNSS0045	520799	6879757	Stream	+200μm	45	7	4	223
Lindville	LNSS0047	520872	6879649	Stream	+200μm	45	44	4	275
Lindville	LNSS0048	520872	6879649	Stream	-200µm	105	2	6	160
Lindville	LNSS0049	519828	6879194	Stream	+200μm	39	13	4	302
Lindville	LNSS0050	519828	6879194	Stream	-200µm	75	6	4	194
Lindville	LNSS0051	520059	6879329	Stream	+200μm	41	10	4	299
Lindville	LNSS0053	521748	6874646	Stream	+200μm	39	6	4	308
Lindville	LNSS0062	518817	6873212	Stream	-200µm	129	6	8	108
Lindville	LNSS0069	516918	6872672	Stream	+200μm	39	11	5	314
Lindville	LNSS0070	516918	6872672	Stream	-200µm	78	7	6	199
Lindville	LNSS0074	516322	6874168	Stream	-200µm	118	4	5	214
Lindville	LNSS0075	516237	6874043	Stream	+200μm	60	5	5	369

Page 30 of 38

PROJECT	SAMPLE ID	EASTING	NORTHING	TYPE	FRACTION	Li2O ppm	Ta ppm	Cs ppm	Rb ppm
Lindville	LNSS0076	516237	6874043	Stream	-200µm	95	9	5	193
Lindville	LNSS0087	526115	6894176	Stream	+200μm	32	6	2	96
Lindville	LNSS0096	522097	6885099	Stream	-200µm	103	2	4	80
Lindville	LNSS0104	512060	6881088	Stream	-200µm	108	2	6	206
Lindville	LNSS0107	514086	6877774	Stream	+200μm	88	15	6	287
Lindville	LNSS0108	514086	6877774	Stream	-200µm	105	6	5	187
Lindville	LNSS0110	514569	6875023	Stream	-200µm	80	14	6	236
Lindville	LNSS0112	514475	6875061	Stream	-200µm	71	7	5	182

Table 12: Split Rocks Project auger sampling assays results (>150 ppm Li₂0).

PROJECT	SAMPLE ID	EASTING	NORTHING	TYPE	Li2O ppm	Ta ppm	Cs ppm	Sn ppm	Rb ppm
SplitRock	SRS00019	736935	6479671	Auger	165	-	5.06	2.1	50.8
SplitRock	SRS00057	737410	6479071	Auger	169	0.01	6.5	3.36	128
SplitRock	SRS00058	737460	6479071	Auger	157	0.01	8.97	4.54	186
SplitRock	SRS00265	736935	6477271	Auger	179	0.01	4.1	1.6	94.6
SplitRock	SRS00291	738862	6477086	Auger	187	-	5.94	2.03	130
SplitRock	SRS00292	738912	6477086	Auger	203	-	6.04	1.94	132
SplitRock	SRS00293	738962	6477086	Auger	207	-	5.52	1.63	137
SplitRock	SRS00294	739012	6477086	Auger	181	-	5.32	1.78	116
SplitRock	SRS00295	739062	6477086	Auger	175	-	5.22	1.82	126
SplitRock	SRS00296	739112	6477086	Auger	195	-	5.11	2.02	118
SplitRock	SRS00297	739162	6477086	Auger	187	-	5.27	2.09	111
SplitRock	SRS00298	739212	6477086	Auger	165	-	4.84	1.7	104
SplitRock	SRS00299	739262	6477086	Auger	202	-	5.33	1.92	116
SplitRock	SRS00309	738312	6477086	Auger	155	-	3.85	1.93	112
SplitRock	SRS00311	738787	6476886	Auger	156	0.01	5.79	2.18	140
SplitRock	SRS00312	738837	6476886	Auger	181	0.01	5.66	2.06	127
SplitRock	SRS00313	738887	6476886	Auger	170	0.01	4.84	1.82	108
SplitRock	SRS00314	738937	6476886	Auger	183	0.01	4.77	1.8	121
SplitRock	SRS00315	738987	6476886	Auger	192	0.01	5.01	2	108
SplitRock	SRS00316	739037	6476886	Auger	209	0.01	4.4	1.88	106
SplitRock	SRS00317	739087	6476886	Auger	188	0.01	5.37	2.18	114
SplitRock	SRS00318	739137	6476886	Auger	155	0.01	4.4	1.63	94.4
SplitRock	SRS00320	739237	6476886	Auger	200	0.01	6.15	2.38	117
SplitRock	SRS00321	739287	6476886	Auger	201	0.01	5.49	2.23	110

Page 31 of 38

PROJECT	SAMPLE ID	EASTING	NORTHING	ТҮРЕ	Li2O ppm	Ta ppm	Cs ppm	Sn ppm	Rb ppm
SplitRock	SRS00322	738737	6476886	Auger	160	0.01	4.65	1.92	112
SplitRock	SRS00333	738812	6476686	Auger	153	0.01	4.03	1.62	98.7
SplitRock	SRS00335	738912	6476686	Auger	159	0.01	4.57	1.79	104
SplitRock	SRS00341	739212	6476686	Auger	177	0.01	4.59	1.95	111
SplitRock	SRS00342	739262	6476686	Auger	154	0.01	4.24	1.71	138
SplitRock	SRS00343	739312	6476686	Auger	194	0.01	4.61	2.11	109
SplitRock	SRS00344	739362	6476686	Auger	196	0.01	4.68	1.85	111
SplitRock	SRS00345	739412	6476686	Auger	230	0.01	4.84	1.82	113
SplitRock	SRS00346	739462	6476686	Auger	235	-	4.95	1.88	114
SplitRock	SRS00347	739512	6476686	Auger	211	-	5.01	1.7	105
SplitRock	SRS00348	739562	6476686	Auger	215	0.01	4.49	2.09	89.9
SplitRock	SRS00349	739612	6476686	Auger	224	0.01	4.52	1.88	87.2
SplitRock	SRS00350	738762	6476686	Auger	171	0.01	4.23	1.93	122
SplitRock	SRS00351	738712	6476686	Auger	173	0.01	4.1	2.19	134
SplitRock	SRS00366	739037	6476486	Auger	209	0.01	5.27	1.78	136
SplitRock	SRS00367	739087	6476486	Auger	220	0.01	6.21	2.1	141
SplitRock	SRS00368	739137	6476486	Auger	224	0.01	6.01	2.4	128
SplitRock	SRS00369	739187	6476486	Auger	199	0.01	4.67	2.04	104
SplitRock	SRS00370	739237	6476486	Auger	201	0.01	4.21	2	94.9
SplitRock	SRS00371	739287	6476486	Auger	202	0.01	4.58	2.14	102
SplitRock	SRS00372	739337	6476486	Auger	184	0.01	4.12	1.84	102
SplitRock	SRS00373	739387	6476486	Auger	209	0.01	4.62	2.03	111
SplitRock	SRS00374	739437	6476486	Auger	195	0.01	4.41	1.88	142
SplitRock	SRS00375	739487	6476486	Auger	211	-	4.7	1.71	100
SplitRock	SRS00376	739537	6476486	Auger	224	0.01	4.97	1.7	108
SplitRock	SRS00377	739587	6476486	Auger	250	0.01	5.31	1.71	110
SplitRock	SRS00384	738437	6476486	Auger	158	0.01	5.83	2.7	110
SplitRock	SRS00402	739462	6476286	Auger	170	0.01	4.81	1.73	106
SplitRock	SRS00403	739512	6476286	Auger	178	-	4.8	1.64	108
SplitRock	SRS00404	739562	6476286	Auger	214	-	5.35	1.84	109
SplitRock	SRS00405	739612	6476286	Auger	194	0.01	4.94	1.64	102
SplitRock	SRS00406	739662	6476286	Auger	201	-	5.35	1.83	112
SplitRock	SRS00407	739712	6476286	Auger	208	0.01	5.04	1.9	99.1
SplitRock	SRS00437	739687	6476086	Auger	161	-	4.65	2.06	97.5
SplitRock	SRS00463	739512	6475886	Auger	161	i	4.83	1.71	93.3
SplitRock	SRS00464	739562	6475886	Auger	183	0.01	5.02	1.74	94.4

Page 32 of 38

PROJECT	SAMPLE ID	EASTING	NORTHING	TYPE	Li2O ppm	Ta ppm	Cs ppm	Sn ppm	Rb ppm
SplitRock	SRS00466	739662	6475886	Auger	215	-	5.37	1.7	99.8
SplitRock	SRS00467	739712	6475886	Auger	243	-	5.21	1.71	90.1
SplitRock	SRS00468	739762	6475886	Auger	235	-	4.91	1.66	79.7
SplitRock	SRS00469	739812	6475886	Auger	222	-	5.04	1.93	79.8
SplitRock	SRS00493	739337	6475686	Auger	158	-	2.94	1.34	74
SplitRock	SRS00494	739387	6475686	Auger	154	-	2.91	1.29	68.2
SplitRock	SRS00495	739437	6475686	Auger	180	-	3.44	1.48	73.8
SplitRock	SRS00496	739487	6475686	Auger	195	-	3.58	1.61	78.6
SplitRock	SRS00497	739537	6475686	Auger	248	-	3.6	1.77	77.3
SplitRock	SRS00498	739587	6475686	Auger	276	-	3.77	1.65	79.3
SplitRock	SRS00499	739637	6475686	Auger	261	1	4	1.75	79.7
SplitRock	SRS00500	739687	6475686	Auger	319	-	4.01	1.64	80.5
SplitRock	SRS00501	739737	6475686	Auger	289	-	4.32	1.73	83.6
SplitRock	SRS00502	739787	6475686	Auger	312	-	4.49	1.65	101
SplitRock	SRS00503	739837	6475686	Auger	252	-	4.16	1.47	77
SplitRock	SRS00505	738687	6475686	Auger	152	-	4.07	2.18	102
SplitRock	SRS00508	738537	6475686	Auger	155	-	3.72	1.72	110
SplitRock	SRS00509	738487	6475686	Auger	199	-	5.23	2.45	121
SplitRock	SRS00510	738437	6475686	Auger	173	-	5.5	2.44	103
SplitRock	SRS00520	739062	6475486	Auger	163	-	3.35	1.48	98.2
SplitRock	SRS00521	739112	6475486	Auger	163	1	3.54	1.69	90.4
SplitRock	SRS00523	739212	6475486	Auger	226	-	5.38	1.64	102
SplitRock	SRS00528	739462	6475486	Auger	220	-	5.24	1.88	122
SplitRock	SRS00529	739512	6475486	Auger	214	-	5.23	1.79	131
SplitRock	SRS00530	739562	6475486	Auger	239	-	5.2	1.75	121
SplitRock	SRS00531	739612	6475486	Auger	256	1	5.43	1.67	122
SplitRock	SRS00532	739662	6475486	Auger	265	1	5.52	1.78	100
SplitRock	SRS00534	739762	6475486	Auger	263	1	5.28	1.8	88.8
SplitRock	SRS00535	739812	6475486	Auger	195	-	5.5	1.82	114
SplitRock	SRS00536	739862	6475486	Auger	228	1	5.29	1.76	103
SplitRock	SRS00537	739912	6475486	Auger	153	-	4.06	1.56	79.4
SplitRock	SRS00541	738612	6475486	Auger	177	0.01	6.2	3.28	101
SplitRock	SRS00542	738562	6475486	Auger	162	0.01	6	3.04	108
SplitRock	SRS00543	738512	6475486	Auger	184		5.66	2.93	136
SplitRock	SRS00544	738462	6475486	Auger	233	-	6.12	3.2	113
SplitRock	SRS00545	738412	6475486	Auger	195	-	5.8	2.92	106

Page 33 of 38

PROJECT	SAMPLE ID	EASTING	NORTHING	TYPE	Li2O ppm	Ta ppm	Cs ppm	Sn ppm	Rb ppm
SplitRock	SRS00546	738362	6475486	Auger	250	-	6.2	3.01	100
SplitRock	SRS00547	738312	6475486	Auger	175	0.01	7.64	3.22	148
SplitRock	SRS00561	739337	6475286	Auger	160	0.01	5.04	1.81	108
SplitRock	SRS00562	739387	6475286	Auger	168	-	5.71	2.03	108
SplitRock	SRS00563	739437	6475286	Auger	217	-	5.42	1.83	124
SplitRock	SRS00564	739487	6475286	Auger	220	-	6	1.96	118
SplitRock	SRS00565	739537	6475286	Auger	207	-	5.64	2.06	112
SplitRock	SRS00566	739587	6475286	Auger	207	-	6.13	2.13	95.4
SplitRock	SRS00567	739637	6475286	Auger	209	-	6.13	1.83	105
SplitRock	SRS00568	739687	6475286	Auger	252	-	6.26	1.84	109
SplitRock	SRS00569	739737	6475286	Auger	256	-	6.32	2.01	106
SplitRock	SRS00570	739787	6475286	Auger	186	-	6.33	2.19	75.5
SplitRock	SRS00571	739837	6475286	Auger	241	-	6.56	2.1	107
SplitRock	SRS00572	739887	6475286	Auger	193	-	6.97	2.29	72
SplitRock	SRS00575	738637	6475286	Auger	173	-	7.58	3.41	115
SplitRock	SRS00577	738537	6475286	Auger	173	0.01	7.71	3.9	104
SplitRock	SRS00578	738487	6475286	Auger	182	-	7	3.48	110
SplitRock	SRS00579	738437	6475286	Auger	217	0.01	10.7	5.66	117
SplitRock	SRS00580	738387	6475286	Auger	230	0.01	8.41	4.03	141
SplitRock	SRS00581	738337	6475286	Auger	243	0.01	8.89	4.02	147
SplitRock	SRS00582	738287	6475286	Auger	193	1	8.68	3.76	150
SplitRock	SRS00583	738237	6475286	Auger	214	0.01	8.43	3.28	151
SplitRock	SRS00594	739312	6475086	Auger	155	-	4.51	2.15	112
SplitRock	SRS00597	739462	6475086	Auger	172	1	4.62	1.98	108
SplitRock	SRS00598	739512	6475086	Auger	224	0.01	4.69	1.99	142
SplitRock	SRS00599	739562	6475086	Auger	199	ı	4.61	1.81	97.5
SplitRock	SRS00601	739662	6475086	Auger	183	1	5.61	2.27	89
SplitRock	SRS00603	739762	6475086	Auger	224	1	5.51	1.96	89.9
SplitRock	SRS00604	739812	6475086	Auger	237	-	6.1	2.05	93.1
SplitRock	SRS00605	739862	6475086	Auger	256	ı	5.94	2.02	108
SplitRock	SRS00606	739912	6475086	Auger	286	-	6.8	2.1	95.9
SplitRock	SRS00609	738662	6475086	Auger	160	-	5.65	2.77	84.6
SplitRock	SRS00610	738612	6475086	Auger	164	0.01	5.91	2.96	103
SplitRock	SRS00611	738562	6475086	Auger	200		6.11	3.04	100
SplitRock	SRS00612	738512	6475086	Auger	172	0.02	5.96	3.26	119
SplitRock	SRS00614	738412	6475086	Auger	250	0.01	7.13	3.68	143

Page 34 of 38

PROJECT	SAMPLE ID	EASTING	NORTHING	ТҮРЕ	Li2O ppm	Ta ppm	Cs ppm	Sn ppm	Rb ppm
SplitRock	SRS00615	738362	6475086	Auger	160	-	9.33	2.93	177
SplitRock	SRS00616	738312	6475086	Auger	241	-	7.12	3.68	125
SplitRock	SRS00617	738262	6475086	Auger	265	0.01	7.96	3.62	152
SplitRock	SRS00618	738212	6475086	Auger	222	0.01	9.06	3.47	145
SplitRock	SRS00632	739437	6474886	Auger	176	0.01	4.61	1.61	120
SplitRock	SRS00633	739487	6474886	Auger	158	0.01	5.03	1.78	109
SplitRock	SRS00634	739537	6474886	Auger	171	0.01	6.23	2.09	129
SplitRock	SRS00636	739637	6474886	Auger	170	0.01	5.6	1.63	122
SplitRock	SRS00637	739687	6474886	Auger	198	0.01	6.13	1.99	103
SplitRock	SRS00638	739737	6474886	Auger	158	-	5.48	1.49	91.4
SplitRock	SRS00639	739787	6474886	Auger	168	1	6.24	1.48	96.8
SplitRock	SRS00643	738687	6474886	Auger	153	-	5.03	2.08	89.2
SplitRock	SRS00651	738287	6474886	Auger	185	-	7.26	2.73	115
SplitRock	SRS00652	738237	6474886	Auger	202	0.01	7.14	2.71	123
SplitRock	SRS00663	739312	6474686	Auger	151	0.01	5.04	1.96	106
SplitRock	SRS00665	739412	6474686	Auger	189	-	5.31	2.03	121
SplitRock	SRS00666	739462	6474686	Auger	180	0.01	4.88	1.89	111
SplitRock	SRS00667	739512	6474686	Auger	210	-	5.2	1.89	116
SplitRock	SRS00669	739612	6474686	Auger	194	0.01	5.75	1.94	122
SplitRock	SRS00670	739662	6474686	Auger	237	-	6.02	1.88	145
SplitRock	SRS00671	739712	6474686	Auger	261	1	5.83	2.03	109
SplitRock	SRS00672	739762	6474686	Auger	261	-	6.12	1.86	116
SplitRock	SRS00673	739812	6474686	Auger	273	-	6.31	1.94	121
SplitRock	SRS00674	739862	6474686	Auger	271	-	6.94	1.97	95.8
SplitRock	SRS00675	739912	6474686	Auger	280	0.01	6.19	1.9	104
SplitRock	SRS00687	738212	6474686	Auger	182	1	4.66	2.1	78.2
SplitRock	SRS00700	739337	6474486	Auger	182	1	4.07	1.96	80.4
SplitRock	SRS00701	739387	6474486	Auger	192	0.01	4.13	1.78	84.5
SplitRock	SRS00702	739437	6474486	Auger	207	0.01	4.18	1.79	93.5
SplitRock	SRS00703	739487	6474486	Auger	213	0.01	4.42	1.8	90.2
SplitRock	SRS00704	739537	6474486	Auger	230	-	4.69	1.87	93.1
SplitRock	SRS00705	739587	6474486	Auger	215	-	4.85	1.95	88.6
SplitRock	SRS00706	739637	6474486	Auger	186	0.01	4.34	1.93	75.4
SplitRock	SRS00707	739687	6474486	Auger	198	-	4.94	2.12	76.2
SplitRock	SRS00708	739737	6474486	Auger	202	-	4.93	2.05	77.6
SplitRock	SRS00709	739787	6474486	Auger	205	-	5.01	2.03	76.3

Page 35 of 38

PROJECT	SAMPLE ID	EASTING	NORTHING	TYPE	Li2O ppm	Ta ppm	Cs ppm	Sn ppm	Rb ppm
SplitRock	SRS00710	739837	6474486	Auger	220	0.01	5.41	2.09	73.7
SplitRock	SRS00711	739887	6474486	Auger	228	-	5.59	2.06	68.5
SplitRock	SRS00712	739937	6474486	Auger	222	-	4.63	1.74	63.7
SplitRock	SRS00713	739987	6474486	Auger	239	0.01	5.04	1.92	75.6
SplitRock	SRS00736	739362	6474286	Auger	161	-	4.75	1.84	87.9
SplitRock	SRS00737	739412	6474286	Auger	174	0.01	4.91	1.98	91.3
SplitRock	SRS00739	739512	6474286	Auger	154	-	5.28	1.68	101
SplitRock	SRS00740	739562	6474286	Auger	180	-	6.07	1.94	99.4
SplitRock	SRS00741	739612	6474286	Auger	186	-	6.07	1.85	95.9
SplitRock	SRS00742	739662	6474286	Auger	205	-	5.95	1.81	99.8
SplitRock	SRS00743	739712	6474286	Auger	202	-	5.6	1.68	103
SplitRock	SRS00744	739762	6474286	Auger	233	-	6.22	1.89	98.7
SplitRock	SRS00745	739812	6474286	Auger	174	-	6.58	2.04	105
SplitRock	SRS00771	739187	6474086	Auger	154	0.01	6.05	2.05	103
SplitRock	SRS00772	739237	6474086	Auger	199	0.01	5.74	2.2	110
SplitRock	SRS00773	739287	6474086	Auger	184	-	5.44	1.99	103
SplitRock	SRS00774	739337	6474086	Auger	162	-	5.77	2.05	107
SplitRock	SRS00775	739387	6474086	Auger	203	-	5.73	2.01	120
SplitRock	SRS00776	739437	6474086	Auger	211	-	6.01	2.18	110
SplitRock	SRS00777	739487	6474086	Auger	222	-	5.99	1.9	107
SplitRock	SRS00778	739537	6474086	Auger	213	1	6.29	2.03	118
SplitRock	SRS00779	739587	6474086	Auger	220	-	5.86	2.04	101
SplitRock	SRS00780	739637	6474086	Auger	222	-	5.82	2.11	103
SplitRock	SRS00781	739687	6474086	Auger	248	0.01	7.45	2.52	108
SplitRock	SRS00782	739737	6474086	Auger	239	0.01	6.41	2.01	97.2
SplitRock	SRS00783	739787	6474086	Auger	226	1	6.23	2.03	99.7
SplitRock	SRS00784	739837	6474086	Auger	220	1	6.33	2.04	107
SplitRock	SRS00785	739887	6474086	Auger	217	-	5.7	1.74	90.1
SplitRock	SRS00786	739937	6474086	Auger	243	-	6.5	2.07	110
SplitRock	SRS00787	739987	6474086	Auger	267	0.01	6.44	2.24	110
SplitRock	SRS00807	739212	6473886	Auger	159	-	5.19	2.22	100
SplitRock	SRS00808	739262	6473886	Auger	171	-	4.61	1.93	94.4
SplitRock	SRS00809	739312	6473886	Auger	171	-	4.74	1.87	93.8
SplitRock	SRS00810	739362	6473886	Auger	159	-	5	2.12	94.7
SplitRock	SRS00811	739412	6473886	Auger	160	-	4.78	2.12	88.9
SplitRock	SRS00812	739462	6473886	Auger	154	-	4.85	2.09	84.9

Page 36 of 38

PROJECT	SAMPLE ID	EASTING	NORTHING	TYPE	Li2O ppm	Ta ppm	Cs ppm	Sn ppm	Rb ppm
SplitRock	SRS00813	739512	6473886	Auger	161	-	4.97	2.2	90.3
SplitRock	SRS00814	739562	6473886	Auger	162	-	5	1.97	93.6
SplitRock	SRS00815	739612	6473886	Auger	176	0.01	5.45	2.36	99.2
SplitRock	SRS00816	739662	6473886	Auger	182	-	5.21	1.98	87.7
SplitRock	SRS00817	739712	6473886	Auger	203	0.01	5.44	2.35	84.9
SplitRock	SRS00818	739762	6473886	Auger	162	0.01	4.76	1.83	85.1
SplitRock	SRS00819	739812	6473886	Auger	215	0.01	5.12	2.11	77.8
SplitRock	SRS00820	739862	6473886	Auger	184	-	4.8	1.99	78.2
SplitRock	SRS00821	739912	6473886	Auger	203	0.01	4.98	2.18	76.9
SplitRock	SRS00822	739962	6473886	Auger	201	-	4.76	1.93	79.2
SplitRock	SRS00847	739287	6473686	Auger	156	-	5.11	2.02	87.8
SplitRock	SRS00848	739337	6473686	Auger	157	-	5.08	2	93.2
SplitRock	SRS00849	739387	6473686	Auger	161	0.01	5.34	2.12	94.1
SplitRock	SRS00850	739437	6473686	Auger	184	0.01	5.73	2.17	105
SplitRock	SRS00851	739487	6473686	Auger	181	0.01	6.21	2.22	107
SplitRock	SRS00852	739537	6473686	Auger	168	0.01	5.44	2.12	99
SplitRock	SRS00853	739587	6473686	Auger	188	0.01	5.8	2.07	108
SplitRock	SRS00854	739637	6473686	Auger	169	0.01	6.08	2.14	108
SplitRock	SRS00855	739687	6473686	Auger	189	0.01	6.14	2.17	109
SplitRock	SRS00856	739737	6473686	Auger	190	0.01	5.64	2.04	97
SplitRock	SRS00857	739787	6473686	Auger	217	0.01	5.67	1.92	104
SplitRock	SRS00858	739837	6473686	Auger	181	0.01	6.5	2.26	88.9
SplitRock	SRS00859	739887	6473686	Auger	243	0.01	5.5	1.92	88
SplitRock	SRS00860	739937	6473686	Auger	175	0.01	4.5	1.66	72.8
SplitRock	SRS00861	739987	6473686	Auger	158	0.01	4.85	1.99	78.2
SplitRock	SRS00881	739212	6473486	Auger	171	-	6.36	2.44	97.8
SplitRock	SRS00882	739262	6473486	Auger	154	-	5.57	2.04	95.7
SplitRock	SRS00883	739312	6473486	Auger	168	0.01	6.11	2.4	103
SplitRock	SRS00884	739362	6473486	Auger	164	ı	6.73	2.44	108
SplitRock	SRS00885	739412	6473486	Auger	156	-	6.05	2.15	110
SplitRock	SRS00887	739512	6473486	Auger	169	-	6.46	2.04	124
SplitRock	SRS00888	739562	6473486	Auger	197	-	6.01	1.94	115
SplitRock	SRS00889	739612	6473486	Auger	188	-	6.94	1.88	119
SplitRock	SRS00890	739662	6473486	Auger	186	-	7.11	2.14	115
SplitRock	SRS00891	739712	6473486	Auger	179	0.01	5.93	2.09	99.6
SplitRock	SRS00892	739762	6473486	Auger	206	0.01	5.91	2.21	109

PROJECT	SAMPLE ID	EASTING	NORTHING	ТҮРЕ	Li2O ppm	Ta ppm	Cs ppm	Sn ppm	Rb ppm
SplitRock	SRS00893	739812	6473486	Auger	182	0.01	5.44	2.09	88.3
SplitRock	SRS00894	739862	6473486	Auger	188	0.01	5.53	2.03	96.8
SplitRock	SRS00895	739912	6473486	Auger	220	0.01	5.65	2.17	80.2
SplitRock	SRS00896	739962	6473486	Auger	208	0.01	5.28	2.13	88.2
SplitRock	SRS00897	740012	6473486	Auger	174	0.01	5.23	2.06	86.1

Table 13: Mt Alexander Project lag sampling programme assays results (>5 ppb Au).

PROJECT	SAMPLE ID	EASTING	NORTHING	TYPE	Au ppb	As ppm	Bi ppm	Mo ppm	Cu ppm	Ni ppm	Pb ppm
MtAlex	MAL00026	236803	6799922	Lag	7	1	3.5	1	35	38	4
MtAlex	MAL00051	236903	6799722	Lag	7	-	1.4	-	27	44	4
MtAlex	MAL00062	237178	6799722	Lag	8	6	1	-	25	166	3
MtAlex	MAL00078	237053	6799522	Lag	11	1	0.5	-	46	158	4
MtAlex	MAL00093	237428	6799522	Lag	11	12	1.9	0.5	103	124	6
MtAlex	MAL00095	237478	6799522	Lag	6	-	0.4	-	45	122	3
MtAlex	MAL00102	237128	6799322	Lag	11	1	0.8	1	45	150	3
MtAlex	MAL00105	237203	6799322	Lag	6	1	1.1	1	57	168	4
MtAlex	MAL00109	237303	6799322	Lag	11	1	1.3	1	56	146	2
MtAlex	MAL00118	237528	6799322	Lag	11	4	0.3	-	74	114	3
MtAlex	MAL00127	237203	6799122	Lag	9	1	0.5	1	53	148	2
MtAlex	MAL00165	237578	6798922	Lag	12	136	8.5	4.5	262	52	31
MtAlex	MAL00192	237653	6798722	Lag	10	2	0.5	-	56	172	2
MtAlex	MAL00198	237803	6798722	Lag	9	7	0.6	1	113	132	7
MtAlex	MAL00199	237828	6798722	Lag	6	3	0.1	1	35	104	3
MtAlex	MAL00251	237953	6798322	Lag	7	1	1.1	-	78	144	3
MtAlex	MAL00279	237978	6798125	Lag	9	1	2.3	-	32	148	3
MtAlex	MAL00326	238503	6797925	Lag	8	36	0.7	1	151	180	22
MtAlex	MAL00340	238203	6797725	Lag	7	-	4.2	0.5	58	100	8
MtAlex	MAL00344	238303	6797725	Lag	11	3	3.3	0.5	68	98	3
MtAlex	MAL00361	238078	6797525	Lag	7	-	3.5	-	80	128	5
MtAlex	MAL00533	238427	6796327	Lag	110	-	7.2	1	54	102	4
MtAlex	MAL00563	238758	6795669	Lag	12	3	1.3	6.5	36	200	12
MtAlex	MAL00564	238783	6795669	Lag	22	-	2.8	0.5	73	108	17
MtAlex	MAL00565	238808	6795669	Lag	7	-	3.8	0.5	94	96	25
MtAlex	MAL00579	239158	6795669	Lag	7	495	1.6	5.5	316	92	69

QUARTERLY REPORT.

Page 38 of 38

PROJECT	SAMPLE ID	EASTING	NORTHING	TYPE	Au ppb	As ppm	Bi ppm	Mo ppm	Cu ppm	Ni ppm	Pb ppm
MtAlex	MAL00635	239203	6794325	Lag	9	2	4.8	0.5	61	88	5
MtAlex	MAL00636	239228	6794325	Lag	6	1	3.1	0.5	62	102	5
MtAlex	MAL00637	239253	6794325	Lag	9	3	5.3	1.5	138	112	6
MtAlex	MAL00724	239803	6793925	Lag	6	2	0.2	-	42	144	2
MtAlex	MAL00727	239878	6793925	Lag	7	32	0.4	0.5	53	156	5
MtAlex	MAL00735	240078	6793925	Lag	8	10	-	1	53	120	3
MtAlex	MAL00736	239328	6793725	Lag	9	-	-	-	36	50	6
MtAlex	MAL00737	239353	6793725	Lag	20	1	0.1	ı	30	34	4
MtAlex	MAL00738	239378	6793725	Lag	23	1	0.3	ı	37	134	3
MtAlex	MAL00739	239403	6793725	Lag	11	-	0.6	-	32	124	3
MtAlex	MAL00742	239478	6793725	Lag	8	1	1.3	1	60	80	3
MtAlex	MAL00746	239578	6793725	Lag	8	1	0.2	1	34	34	3
MtAlex	MAL00747	239603	6793725	Lag	6	1	-	-	31	52	3
MtAlex	MAL00752	239728	6793725	Lag	7	1	0.2	ı	47	128	2
MtAlex	MAL00757	239853	6793725	Lag	9	2	0.4	1	53	156	3
MtAlex	MAL00769	240153	6793725	Lag	6	10	-	-	37	106	2
MtAlex	MAL00804	240253	6793525	Lag	6	15	-	ı	35	118	3
MtAlex	MAL00805	240278	6793525	Lag	9	18	-	ı	40	94	3
MtAlex	MAL00820	239878	6793325	Lag	11	2	0.7	ı	36	106	5
MtAlex	MAL00823	239953	6793325	Lag	7	2	0.3	-	43	160	2
MtAlex	MAL00824	239978	6793325	Lag	6	2	-	-	43	148	2
MtAlex	MAL00834	240228	6793325	Lag	9	43	0.3	1	92	110	14
MtAlex	MAL00868	240178	6792919	Lag	8	9	-	-	46	86	3

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Bunningonia Project

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Auger Sampling: All samples were collected using a handheld Auger aiming for the A/B horizo in the soil profile, whenever this horizon was not able to be spotted, a genero depth of 20-30cm was applied, samples were sieved to 2mm for 200g of sample collected, subsequently the sieve to 180 micron. Samples were then collected is a numbered paper bag for laboratory assay.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of	Auger Sampling: Samples are taken on sequential grid basis and collected using uniquel numbered paper bags. The sample collection details such as coordinates and terrain characteristics were both noted in paper form and handheld GPS during field activity. No reference materials were used. Auger Sampling:
	mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	A unique sample was collect under the fraction of 2mm and subsequently siev to 180µm and sent to Labwest for preparation. The samples were subject to th Ultrafine+ method and analysed by 50 elements finished with ICP-OES & ICF MS finish. These elements are: Ag, Cs, Mo, Ta, Al, Cu, Nb, Te, As, Fe, Ni, Th, Au Ga, Pb, Ti, B, Ge, Pd, Tl, Ba, Hf, Pt, U, Be, Hg, Rb, V, Bi, I, Re, W, Br, In, S, Y, Co K, Sb, Zn, Cd, La, Sc, Zr, Ce, Li, Se, Co, Mg, Sn, Cr, Mn, Sr. Fire assay method was also conducted, samples were analysed to Au with detection limit of 1ppb, Pt and Pd both with a detection limit of 5ppb.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diametre, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	Handheld Auger was used to obtain an approximately 5g-1kg sample from general depth of 2-3cm that was then passed through a >2mm sieve to obtain a 200g sample.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Handheld Auger samples are visually checked for moisture and contamination Geological logging is completed at site to record the nature and characteristic of the samples

Criteria	JORC Code explanation	Commentary
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Handheld samples are collected, sieved and immediately stored in paper bags, the samples are grouped by lines and packed accordingly prior to dispatch to the lab for analysis.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	To date, no sample recovery issues have yet been identified that would impact on potential sample bias in the soil profile or sampling methods.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Each sample is recorded for the lithology, type and nature of the soil. The surface topography and type is recorded at the sample location. Logging of samples records weathering, colour and other noticeable features.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	The logging is both qualitive and quantitative in nature, with sample recovery and volume being recorded,
	The total length and percentage of the relevant intersections logged.	Not applicable as drilling is not reported for this project
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Not applicable as drilling is not reported for this project
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	All samples were dry when collected
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Samples are dried, crushed and pulverized to produce a homogenous representative sub-sample for analysis at the laboratory
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	No QAQC are inserted within the submitted samples and are not deemed necessary for this stage of exploration. Internal laboratory QAQC measures are considered sufficient
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	The sample material is sourced from the bottom of the pits with efforts made to reduce the amount of surficial 'float' material entering the sample. Sieving of the sample helps to homogenise and reduce size fraction of the sample
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly represent mineralisation and associated geology based on the style of mineralisation
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The assay method and detection limits are appropriate for analysis of the elements required.

Criteria	JORC Code explanation	Commentary		
	For geophysical tools, spectrometres, handheld XRF instruments, etc, the parametres used in determining the analysis including instrument make and model, reading times, calibrations	A handheld XRF instrument (Sciapps X-555 Spectrum Analyser) is used to provide an indicative assay of the geochemical sample onsite. One reading is taken per sample. The instruments are serviced and calibrated at least once a year. Field calibration of the XRF instrument using standards is periodically performed (daily).		
	factors applied and their derivation, etc.	The handheld XRF results are only used for preliminary assessment and not for reporting of element compositions, prior to the receipt of assay results from the certified laboratory.		
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks)	Laboratory QAQC involves the use of internal lab standards using certified reference material (CRMs), blanks and pulp duplicates as part of in-house procedures.		
	and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Sample preparation checks according to the method are performed by the laboratory to ensure the grind size expected is being attained.		
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections and assays are verified by the Company's Technical Director and Consulting Field Geologist.		
	The use of twinned holes.	Not applicable as drilling is not reported for this project		
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary data is captured onto a laptop using acQuire software and includes geological logging, sample data and QA/QC information. This data, together with the assay data, is entered into the St George Mining central SQL database which is managed by external consultants.		
	Discuss any adjustment to assay data.	No adjustments or calibrations will be made to any primary assay data collected for the purpose of reporting assay grades and mineralised intervals. For the geological analysis, standards and recognised factors may be used to calculate the oxide from assayed elements, or to calculate volatile free mineral levels in rocks.		
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral	The sample locations are determined by using a handheld GPS system with an expected accuracy of +/-5m for easting, northing and elevation. This is considered adequate for the type and purpose of the surveys.		
-	to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	expected accuracy of +/-5m for easting, northing and elevation. This is considered adequate for the type and purpose of the surveys.		
-	to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral	expected accuracy of +/-5m for easting, northing and elevation. This is		
-	to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	expected accuracy of +/-5m for easting, northing and elevation. This is considered adequate for the type and purpose of the surveys.		

Criteria	JORC Code explanation	Commentary		
Data spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Not applicable as drilling is not reported for this project		
	Whether sample compositing has been applied.	No composition has been applied to the exploration results.		
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The auger samples are taken at regular intervals, at a near perpendicular orientation (unless otherwise stated). However, the orientation of key structures may be locally variable and any relationship to potential mineralisation has yet to be identified.		
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No orientation based sampling bias has been identified in the data to date.		
Sample security	The measures taken to ensure sample security.	Chain of Custody is managed by the Company until samples pass to a duly certified assay laboratory for subsampling and assaying. The sample bags are stored on secure sites and delivered to the assay laboratory by the Company or a competent agent. When in transit, they are kept in locked premises. Transport logs have been set up to track the progress of samples. The chain of custody passes upon delivery of the samples to the assay laboratory.		
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques and procedures are regularly reviewed internally, as is the data.		

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The Bunningonis Project is comprised of 5 granted Exploration Licences (E28/3233, E28/3232, E28/2962, E28/3487, E63/2142). All are 100% owned by St George Mining Ltd. No environmentally sensitive sites have been identified on the tenements. No known registered Heritage sites have been identified within the tenements. All 5 tenements are in good standing with no known impediments.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	Exploration in the broader Coolgardie region has historically targeted gold mineralisation form circa 1880s. These where surface and orogenic style gold deposits. Since then, no major exploration has taken place within the region. No previous exploration has targeted pegmatite hosted lithium deposits within the region.
Geology	Deposit type, geological setting and style of mineralization.	St George is targeting pegmatite hosted Lithium deposits at the Bunningonia Project. This is based on geophysical and geological interpretations of recently acquired modern datasets. The Project lies within the Eastern Goldfields Super -Terrane. The location is further constrained to the Kurnalpi Terrane, with the Kurnalpi Terrane being bounded by the Hootanui Fault to the east and the Ockerburry Fault to the west. These terrains are considered prospective for gold, nickel, REE, lithium and copper.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent 	Not applicable as drilling is not reported for this project

Criteria	JORC Code explanation	Commentary
	Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Reported assay intersections are length and density weighted. Significant intersections are determined using both qualitative (i.e. geological logging) and quantitative (i.e. lower cut-off) methods. For grade intersection of Li ₂ O, the nominal lower cut-off is 100 ppm Li ₂ O. For grade intersection of Au, the nominal lower cut-off is 15 ppb Au. Any high-grade intervals internal to broader zones of mineralisation are reported as included intervals. Any mineralisation with (usually) >100 ppm Li ₂ O may be grouped with the reported intervals for calculating significant intersections and the mineralisation with (usually) >100 ppb Au may be grouped with the reported intervals for calculating significant intersection. Any mineralisation with (usually) >100 ppb Au may be grouped with the reported intervals for calculating significant intersections and the mineralisation is reported as an including intersection. No metal equivalent values are used for reporting exploration results.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Assay intersections are reported as down hole lengths. Handheld auger holes are planned as perpendicular as possible to intersect the target lithologies and geological targets so downhole lengths are usually interpreted to be near true width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	A prospect location map are shown in the body of relevant ASX Releases.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Reports on recent exploration can be found in ASX Releases that are available on our website at www.stgm.com.au: The exploration results reported are representative of the mineralisation style with grades and/or widths reported in a consistent manner.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): 	All material or meaningful data collected has been reported

Criteria	JORC Code explanation	Commentary
	geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or largescale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	A discussion of further exploration work underway is contained in the body of recent ASX Releases. Further exploration will be planned based on ongoing drill results, geophysical surveys and geological assessment of prospectivity.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Lindville Project

Criteria	JORC Code explanation	Commentary		
Sampling	Nature and quality of sampling (eg cut	Stream Sediment Sampling:		
techniques	channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	All samples were collected along seasonal streams in zones considered natural traps for heavier elements, the samples were sieved to a fraction of 2mm for 200g of sample collected and to another fraction of 180 micro, both fractions were then collected in a numbered paper bag and sent to the laboratory to be individually assayed.		
	Include reference to measures taken	Stream Sediment Sampling:		
	to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Samples are taken on sequential upstream along the beds of seasonal creeks in areas considered natural traps for heavier minerals and collected using uniquely numbered paper bags. The sample collection details such as coordinates and terrain characteristics were both noted in paper form and handheld GPS during field activity. No reference materials were used.		
	Aspects of the determination of	Stream Sediment Sampling:		
	mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	A unique sample was collected under the fractions of 2mm and 180µm and sent to Jinning Laboratories for preparation. The samples were subject to the Peroxide Fusion method and analysed by 50 elements finished with ICP-OES & ICP-MS finish. These elements are: Ag, Cs, Mo, Ta, Al, Cu, Nb, Te, As, Fe, Ni, Th, Au, Ga, Pb, Ti, B, Ge, Pd, Tl, Ba, Hf, Pt, U, Be, Hg, Rb, V, Bi, I, Re, W, Br, In, S, Y, Ca, K, Sb, Zn, Cd, La, Sc, Zr, Ce, Li, Se, Co, Mg, Sn, Cr, Mn, Sr.		
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diametre, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	Manual collecting sampling was used to obtain an approximately 5g-1kg sample from a general depth of 2-3cm that was then passed through both a >2mm and >180 micron sieves to obtain a 200g sample for each fraction.		

Criteria	JORC Code explanation	Commentary
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Samples are visually checked for moisture and contamination. Geological logging is completed at site to record the nature and characteristics of the samples
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Samples are collected, sieved and immediately stored in paper bags, the samples are grouped by location and packed accordingly prior to dispatch to the lab for analysis.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	To date, no sample recovery issues have yet been identified that would impact on potential sample bias in the soil profile or sampling methods.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and	Each sample is recorded for the lithology, type and nature of the material. The surface topography and type is recorded at the sample location. Logging of samples records weathering, colour and other noticeable features.
	metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	The logging is both qualitive and quantitative in nature, with sample recovery and volume being recorded,
	The total length and percentage of the relevant intersections logged.	Not applicable as drilling is not reported for this project
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Not applicable as drilling is not reported for this project
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	All samples were dry when collected
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Samples are dried, crushed and pulverized to produce a homogenous representative sub-sample for analysis at the laboratory
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	No QAQC are inserted within the submitted samples and are not deemed necessary for this stage of exploration. Internal laboratory QAQC measures are considered sufficient
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	The sample material is sourced from the beds of creeks in areas considered traps for heavier minerals, efforts are made to reduce the amount of surficial 'float' material entering the sample. Sieving of the sample helps to homogenise and reduce size fraction of the sample

Criteria	JORC Code explanation	Commentary
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly represent mineralisation and associated geology based on the style of mineralisation
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The assay method and detection limits are appropriate for analysis of the elements required.
	For geophysical tools, spectrometres, handheld XRF instruments, etc, the parametres used in determining the analysis including instrument make and model, reading times, calibrations	A handheld XRF instrument (Sciapps X-555 Spectrum Analyser) is used to provide an indicative assay of the geochemical sample onsite. One reading is taken per sample. The instruments are serviced and calibrated at least once a year. Field calibration of the XRF instrument using standards is periodically performed (daily).
	factors applied and their derivation, etc.	The handheld XRF results are only used for preliminary assessment and not for reporting of element compositions, prior to the receipt of assay results from the certified laboratory.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks)	Laboratory QAQC involves the use of internal lab standards using certified reference material (CRMs), blanks and pulp duplicates as part of in-house procedures.
	and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Sample preparation checks according to the method are performed by the laboratory to ensure the grind size expected is being attained.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections and assays are verified by the Company's Technical Director and Consulting Field Geologist.
•	The use of twinned holes.	Not applicable as drilling is not reported for this project
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary data is captured onto a laptop using acQuire software and includes geological logging, sample data and QA/QC information. This data, together with the assay data, is entered into the St George Mining central SQL database which is managed by external consultants.
	Discuss any adjustment to assay data.	No adjustments or calibrations will be made to any primary assay data collected for the purpose of reporting assay grades and mineralised intervals. For the geological analysis, standards and recognised factors may be used to calculate the oxide from assayed elements, or to calculate volatile free mineral levels in rocks.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	The sample locations are determined by using a handheld GPS system with an expected accuracy of +/-5m for easting, northing and elevation. This is considered adequate for the type and purpose of the surveys.
	Specification of the grid system used.	The grid system used is GDA94, MGA Zone 50.

Criteria	JORC Code explanation	Commentary
	Quality and adequacy of topographic control.	Elevation data has been acquired using handheld GPS surveying at specific location across the project, including sample location, and entered into the central database.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The stream sediment samples are taken in irregular pattern, following areas of interest both upstream and downstream of seasonal creeks.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Not applicable as drilling is not reported for this project
	Whether sample compositing has been applied.	No composition has been applied to the exploration results.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The stream sediment samples are taken in irregular pattern, following areas of interest both upstream and downstream of seasonal creeks. However, the orientation of key structures may be locally variable and any relationship to potential mineralisation has yet to be identified.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No orientation based sampling bias has been identified in the data to date.
Sample security	The measures taken to ensure sample security.	Chain of Custody is managed by the Company until samples pass to a duly certified assay laboratory for subsampling and assaying. The sample bags are stored on secure sites and delivered to the assay laboratory by the Company or a competent agent. When in transit, they are kept in locked premises. Transport logs have been set up to track the progress of samples. The chain of custody passes upon delivery of the samples to the assay laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques and procedures are regularly reviewed internally, as is the data.

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The Lindville Project is comprised of 3 granted Exploration Licences (E59/2649, E59/2648, E59/2894). All are 100% owned by St George Mining Ltd. No environmentally sensitive sites have been identified on the tenements. No known registered Heritage sites have been identified within the tenements. All 3 tenements are in good standing with no known impediments.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	Previous explorers since 1998 completed work which included mapping and surface sampling, drilling and geophysical surveys, historical data collection, review and re-interpretation. Since then, no major exploration has taken place within the region. Previous exploration didn't comprehensively targeted pegmatite hosted lithium deposits within the region.
Geology	Deposit type, geological setting and style of mineralization.	St George is targeting pegmatite hosted Lithium deposits at the Lindville Project. This is based on geophysical and geological interpretations of recently acquired modern datasets. The project covers portions of the Walganna Suite and the Big Bell Suite monzogranites. The Walganna Suite comprising muscovite-biotite monzogranite is regarded as being the source granite for rare-element pegmatites in the region. These include the nearby Edah beryl occurrence, the Johnsons Well lepidolite and tantalum pegmatites, several lithium and beryl pegmatites located north of Yalgoo and the Dalgaranga lithium and tantalum bearing pegmatites. These greenstones are considered prospective for gold, REE and lithium.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of 	Not applicable as drilling is not reported for this project

Criteria	JORC Code explanation	Commentary
	the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or 	Reported assay intersections are length and density weighted. Significant intersections are determined using both qualitative (i.e. geological logging) and quantitative (i.e. lower cut-off) methods.
	minimum grade truncations (eg cutting of high grades)	For grade intersection of Li_2O , the nominal lower cut-off is 100 ppm Li_2O .
	and cut-off grades are usually Material and should be stated. • Where aggregate intercepts	For grade intersection of Ta, the nominal lower cut-off is 5 ppm Ta.
	incorporate short lengths of high grade results and longer	Any high-grade intervals internal to broader zones of mineralisation are reported as included intervals.
	lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. • The assumptions used for any	Any mineralisation with (usually) >100 ppm Li_2O may be grouped with the reported intervals for calculating significant intersections and the mineralisation is reported as an including intersection.
	reporting of metal equivalent values should be clearly stated.	No metal equivalent values are used for reporting exploration results.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Not applicable as drilling is not reported for this project
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	A prospect location map are shown in the body of relevant ASX Releases.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Reports on recent exploration can be found in ASX Releases that are available on our website at www.stgm.com.au: The exploration results reported are representative of the mineralisation style with grades and/or widths reported in a consistent manner.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including	All material or meaningful data collected has been reported

Criteria	JORC Code explanation	Commentary
	(but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or largescale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	A discussion of further exploration work underway is contained in the body of recent ASX Releases. Further exploration will be planned based on ongoing drill results, geophysical surveys and geological assessment of prospectivity.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Mt Alexander Project

Criteria	JORC Code explanation	Commentary
Sampling	Nature and quality of sampling (eg cut	Lag Sampling:
techniques	channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or	All samples are collected on the coarser fraction of the residual accumulation of rock fragments remaining on the surface after the finer material has been removed, known as lag, quartz crystals and any other contaminant such as wood sticks and seeds are manually discarded during the collection process.
	handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	The material is sieved on a >2mm mesh and approximately 200g of sample is collected in a numbered paper bag for laboratory assay.
	Include reference to measures taken to ensure sample representivity and	Lag Sampling: Samples are taken on sequential grid basis and collected using uniquely
	the appropriate calibration of any measurement tools or systems used.	numbered paper bags. The sample collection details such as coordinates and terrain characteristics were both noted in paper form and handheld GPS during field activity. No reference materials were used.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Lag Sampling:
		Samples are collected under the fraction of 2mm and subsequently and sent to Bureau Veritas Laboratory for preparation. The samples were subject to the Multi Acid Digest method followed by ICP-MS & ICP-OES finish and analysed by 47 elements. These elements are: Ag, As, Ba, Be, Bi, Cd, Ce, Co, Cs, Cu, Dy, Er, Eu, Ga, Gd, Hf, Ho, In, La, Li, Lu, Mo, Nb, Nd, Ni, Pb, Pr, Rb, Re, Sb, Sc, Se, Sm, Sn, Sr, Ta, Tb, Te, Th, Tl, Tm, U, W, Y, Yb, Zn, Zr.
		Fire assay method was also conducted, samples were analysed to Au with a detection limit of 1ppb, Pt and Pd both with a detection limit of 5ppb.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diametre, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	Not applicable as drilling is not reported for this project
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Lag samples are visually checked for moisture and contamination. Geological logging is completed at site to record the nature and characteristics of the samples

Criteria	JORC Code explanation	Commentary
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Lag samples are collected, sieved and immediately stored in paper bags, the samples are grouped by lines and packed accordingly prior to dispatch to the lab for analysis.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	To date, no sample recovery issues have yet been identified that would impact on potential sample bias in the soil profile or sampling methods.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Each sample is recorded for the lithology, type and nature of the soil/fragments. The surface topography and type are recorded at the sample location. Logging of samples records weathering, colour and other noticeable features.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	The logging is both qualitive and quantitative in nature, with sample recovery and volume being recorded,
	The total length and percentage of the relevant intersections logged.	Not applicable as drilling is not reported for this project
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Not applicable as drilling is not reported for this project
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	All samples were dry when collected
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Samples are dried, crushed and pulverized to produce a homogenous representative sub-sample for analysis at the laboratory
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	No QAQC are inserted within the submitted samples and are not deemed necessary for this stage of exploration. Internal laboratory QAQC measures are considered sufficient
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	The sample material is sourced from the surface after initial clearing with a hand brush with efforts made to reduce the amount of contaminant material such as wooden branches and quartz floating for entering the sample. Sieving of the sample helps to homogenise and reduce size fraction of the sample. Oversized pieces and any residual contaminants are discarded prior to collection.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly represent mineralisation and associated geology based on the style of mineralisation
Quality of assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures used and	The assay method and detection limits are appropriate for analysis of the elements required.

Criteria	JORC Code explanation	Commentary
laboratory tests	whether the technique is considered partial or total.	
	For geophysical tools, spectrometres, handheld XRF instruments, etc, the parametres used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	N/A
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Laboratory QAQC involves the use of internal lab standards using certified reference material (CRMs), blanks and pulp duplicates as part of in-house procedures. Sample preparation checks according to the method are performed by the laboratory to ensure the grind size expected is being attained.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant assays reported are verified by the Company's Technical Director and Consulting Field Geologist.
	The use of twinned holes.	Not applicable as drilling is not reported for this project
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary data is captured onto a laptop using acQuire software and includes geological logging, sample data and QA/QC information. This data, together with the assay data, is entered into the St George Mining central SQL database which is managed by external consultants.
	Discuss any adjustment to assay data.	No adjustments or calibrations will be made to any primary assay data collected for the purpose of reporting assay grades and mineralised intervals. For the geological analysis, standards and recognised factors may be used to calculate the oxide from assayed elements, or to calculate volatile free mineral levels in rocks.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings	The sample locations are determined by using a handheld GPS system with an expected accuracy of +/-5m for easting, northing and elevation. This is considered adequate for the type and purpose of the surveys.
	and other locations used in Mineral Resource estimation.	The grid system used is GDA94, MGA Zone 51.
	Specification of the grid system used.	The grid system used is GDA34, INICA 20116 31.
	Quality and adequacy of topographic control.	Elevation data has been acquired using handheld GPS surveying at specific location across the project, including sample location, and entered into the central database.
	Data spacing for reporting of Exploration Results.	The auger samples were taken at 25m intervals along the geochemical survey lines of 200m spacing.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Not applicable as drilling is not reported for this project
	Whether sample compositing has been applied.	No composition has been applied to the exploration results.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The lag samples are taken at regular intervals, at a near perpendicular orientation (unless otherwise stated). However, the orientation of key structures may be locally variable and any relationship to potential mineralisation has yet to be identified.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No orientation based sampling bias has been identified in the data to date.
Sample security	The measures taken to ensure sample security.	Chain of Custody is managed by the Company until samples pass to a duly certified assay laboratory for subsampling and assaying. The sample bags are stored on secure sites and delivered to the assay laboratory by the Company or a competent agent. When in transit, they are kept in locked premises. Transport logs have been set up to track the progress of samples. The chain of custody passes upon delivery of the samples to the assay laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques and procedures are regularly reviewed internally, as is the data.

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Mt Alexander Project is comprised of 8 granted tenemnts (E29/638, E29/548, E29/954, E29/962, E29/972, E29/1041, E29/1143 and P29/2680). Tenement E29/638 is held in Joint Venture between Stageorge (75% interest) and IGO (25% interest). E29/638 and E29/548 are also subject to a royalty in favour of a third party that is outlined in the ASX Release dated 17 December 2015 (as regards E29/638) and the ASX release dated 18 September 2015 (as regards E29/548).
	 The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	No environmentally sensitive sites have been identified on the tenements. A registered Heritage site known as Willsmore 1 (DAI identification 3087) straddles tenements E29/548 and E29/638. All five tenements are in good standing with no known impediments.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	Exploration on tenements E29/638 and E29/962 has been largely for komatiite-hosted nickel sulphides and pegmatite hosted lithium caesium tantalum deposits in the Mt Alexander Greenstone Belt Exploration in the northern section of E29/638 (Cathedrals Belt) and also limited exploration on E29/548 has been for intrusive Ni-Cu sulphides in granite terrane. No historic exploration has been identified on E29/954 or E29/972.
		Mafic-Ultramafic intrusion related high grade nickel-copper-PGI sulphides were discovered at the Mt Alexander Project in 2008. Drilling was completed to test co-incident electromagnetic (EM) and magnetic anomalies associated with nickel-PGE enriched gossans in the northern section of current tenement E29/638. The drilling identified high grade nickel-copper mineralisation in granite-hosted and East-West orientated ultramafic units and the discovery was named the Cathedrals Prospect.
Geology	Deposit type, geological setting and style of mineralization.	The Mt Alexander Project is at the northern end of a western bifurcation of the Mt Ida Greenstones. The greenstones are bound to the west by the interpreted Ida Fault, a significant Craton-scale structure that mark the boundary between the Kalgoorlie Terrane (and Eastern Goldfield Superterrane) to the east and the Youanmi Terrane to the west.
		The Mt Alexander Project is prospective for further high-grade nickel mineralisation (both komatiite and mafic-ultramafic intrusive hosted) lithium mineralisation and also precious metal mineralisation (i.e orogenic gold) that is typified elsewhere in the Yilgarn Craton
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the 	Not applicable as drilling is not reported for this project

Criteria	JORC Code explanation	Commentary
	interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent 	Reported assay intersections are length and density weighted. Significant intersections are usually determined using both qualitative (i.e. geological logging) and quantitative (i.e. lower cut-off) methods. However, due to the nature of the sampling technique, no weighting average techniques was used in the results reported Any high-grade intervals internal to broader zones of mineralisation are usually reported as included intervals. However, due to the nature of the sampling technique, no aggregate intercepts were used in the results reported
	values should be clearly stated.	No metal equivalent values are used for reporting exploration results.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Not applicable as drilling is not reported for this project
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	A prospect location map are shown in the body of relevant ASX Releases.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades	Reports on recent exploration can be found in ASX Releases that are available on our website at www.stgm.com.au:

Criteria	JORC Code explanation	Commentary
	and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The exploration results reported are representative of the mineralisation style with grades and/or widths reported in a consistent manner.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All material or meaningful data collected has been reported
Further work	The nature and scale of planned further work (eg	A discussion of further exploration work underway is contained in the body of recent ASX Releases.
	tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further exploration will be planned based on ongoing drill results, geophysical surveys and geological assessment of prospectivity.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Split Rocks Project

and quality of sampling (eg cut ils, random chips, or specific sed industry standard ement tools appropriate to the is under investigation, such as hole gamma sondes, or ild XRF instruments, etc). These es should not be taken as the broad meaning of ing. The efference to measures taken are sample representivity and propriate calibration of any ement tools or systems used.	Auger Sampling: All samples were collected using a handheld Auger aiming for the A/B horizon in the soil profile, whenever this horizon was not able to be spotted, a general depth of 20-30cm was applied, samples were sieved to 2mm for 200g of sample collected, subsequently the sieve to 180 micron. Samples were then collected in a numbered paper bag for laboratory assay. Auger Sampling: Samples are taken on sequential grid basis and collected using uniquely
sed industry standard ement tools appropriate to the sunder investigation, such as hole gamma sondes, or ld XRF instruments, etc). These es should not be taken as the broad meaning of ag. reference to measures taken are sample representivity and propriate calibration of any	in the soil profile, whenever this horizon was not able to be spotted, a general depth of 20-30cm was applied, samples were sieved to 2mm for 200g of sample collected, subsequently the sieve to 180 micron. Samples were then collected in a numbered paper bag for laboratory assay. Auger Sampling: Samples are taken on sequential grid basis and collected using uniquely
re sample representivity and propriate calibration of any	Samples are taken on sequential grid basis and collected using uniquely
	numbered paper bags. The sample collection details such as coordinates and terrain characteristics were both noted in paper form and handheld GPS during field activity. No reference materials were used.
of the determination of	Auger Sampling:
isation that are Material to the deport. Its where 'industry standard' as been done this would be ly simple (eg 'reverse ion drilling was used to obtain	A unique sample was collect under the fraction of 2mm and subsequently sieve to 180µm and sent to Labwest for preparation. The samples were subject to the Ultrafine+ method and analysed by 50 elements finished with ICP-OES & ICP-MS finish. These elements are: Ag, Cs, Mo, Ta, Al, Cu, Nb, Te, As, Fe, Ni, Th, Au, Ga, Pb, Ti, B, Ge, Pd, Tl, Ba, Hf, Pt, U, Be, Hg, Rb, V, Bi, I, Re, W, Br, In, S, Y, Ca, K, Sb, Zn, Cd, La, Sc, Zr, Ce, Li, Se, Co, Mg, Sn, Cr, Mn, Sr.
1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Fire assay method was also conducted, samples were analysed to Au with a detection limit of 1ppb, Pt and Pd both with a detection limit of 5ppb.
te (eg core, reverse circulation, ple hammer, rotary air blast, Bangka, sonic, etc) and details e diametre, triple or standard lepth of diamond tails, faceing bit or other type, whether oriented and if so, by what	Handheld Auger was used to obtain an approximately 5g-1kg sample from a general depth of 2-3cm that was then passed through a >2mm sieve to obtain a 200g sample.
l, etc).	Handheld Auger samples are visually checked for moisture and contamination. Geological logging is completed at site to record the nature and characteristics
9	le hammer, rotary air blast, sangka, sonic, etc) and details a diametre, triple or standard epth of diamond tails, facego bit or other type, whether oriented and if so, by what

Criteria	JORC Code explanation	Commentary
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Handheld samples are collected, sieved and immediately stored in paper bags, the samples are grouped by lines and packed accordingly prior to dispatch to the lab for analysis.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	To date, no sample recovery issues have yet been identified that would impact on potential sample bias in the soil profile or sampling methods.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Each sample is recorded for the lithology, type and nature of the soil. The surface topography and type is recorded at the sample location. Logging of samples records weathering, colour and other noticeable features.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	The logging is both qualitive and quantitative in nature, with sample recovery and volume being recorded,
	The total length and percentage of the relevant intersections logged.	Not applicable as drilling is not reported for this project
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Not applicable as drilling is not reported for this project
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	All samples were dry when collected
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Samples are dried, crushed and pulverized to produce a homogenous representative sub-sample for analysis at the laboratory
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	No QAQC are inserted within the submitted samples and are not deemed necessary for this stage of exploration. Internal laboratory QAQC measures are considered sufficient
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	The sample material is sourced from the bottom of the pits with efforts made to reduce the amount of surficial 'float' material entering the sample. Sieving of the sample helps to homogenise and reduce size fraction of the sample
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly represent mineralisation and associated geology based on the style of mineralisation
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The assay method and detection limits are appropriate for analysis of the elements required.

Criteria	JORC Code explanation	Commentary
	For geophysical tools, spectrometres, handheld XRF instruments, etc, the parametres used in determining the analysis including instrument make and model, reading times, calibrations	A handheld XRF instrument (Sciapps X-555 Spectrum Analyser) is used to provide an indicative assay of the geochemical sample onsite. One reading is taken per sample. The instruments are serviced and calibrated at least once a year. Field calibration of the XRF instrument using standards is periodically performed (daily).
	factors applied and their derivation, etc.	The handheld XRF results are only used for preliminary assessment and not for reporting of element compositions, prior to the receipt of assay results from the certified laboratory.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision	Laboratory QAQC involves the use of internal lab standards using certified reference material (CRMs), blanks and pulp duplicates as part of in-house procedures. Sample preparation checks according to the method are performed by the
	have been established.	laboratory to ensure the grind size expected is being attained.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections and assays are verified by the Company's Technical Director and Consulting Field Geologist.
	The use of twinned holes.	Not applicable as drilling is not reported for this project
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary data is captured onto a laptop using acQuire software and includes geological logging, sample data and QA/QC information. This data, together with the assay data, is entered into the St George Mining central SQL database which is managed by external consultants.
	Discuss any adjustment to assay data.	No adjustments or calibrations will be made to any primary assay data collected for the purpose of reporting assay grades and mineralised intervals. For the geological analysis, standards and recognised factors may be used to calculate the oxide from assayed elements, or to calculate volatile free mineral levels in rocks.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	The sample locations are determined by using a handheld GPS system with an expected accuracy of +/-5m for easting, northing and elevation. This is considered adequate for the type and purpose of the surveys.
	Specification of the grid system used.	The grid system used is GDA94, MGA Zone 50.
	Quality and adequacy of topographic control.	Elevation data has been acquired using handheld GPS surveying at specific location across the project, including sample location, and entered into the central database.
	Data spacing for reporting of	The auger samples were taken at 100m intervals along the geochemical survey

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Not applicable as drilling is not reported for this project
	Whether sample compositing has been applied.	No composition has been applied to the exploration results.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The auger samples are taken at regular intervals, at a near perpendicular orientation (unless otherwise stated). However, the orientation of key structures may be locally variable and any relationship to potential mineralisation has yet to be identified.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No orientation based sampling bias has been identified in the data to date.
Sample security	The measures taken to ensure sample security.	Chain of Custody is managed by the Company until samples pass to a duly certified assay laboratory for subsampling and assaying. The sample bags are stored on secure sites and delivered to the assay laboratory by the Company or a competent agent. When in transit, they are kept in locked premises. Transport logs have been set up to track the progress of samples. The chain of custody passes upon delivery of the samples to the assay laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques and procedures are regularly reviewed internally, as is the data.

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The Split Rocks Project is comprised of 4 granted Exploration Licences (E77/2868, E77/2869, E77/2870 and E77/2871). All are 100% owned by St George Mining Ltd. No environmentally sensitive sites have been identified on the tenements. No known registered Heritage sites have been identified within the tenements. All 4 tenements are in good standing with no known impediments.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	Previous explorers since 1971 completed work which included mapping and surface sampling, drilling and geophysical surveys, historical data collection, review and re-interpretation. Since then, no major exploration has taken place within the region. Previous exploration didn't comprehensively targeted pegmatite hosted lithium deposits within the region.
Geology	Deposit type, geological setting and style of mineralization.	St George is targeting pegmatite hosted Lithium deposits at the Split Rocks Project. This is based on geophysical and geological interpretations of recently acquired modern datasets. The Split Rocks Project belongs to the Southern Cross Province of the Archean Yilgran Craton. The province is dominated by north-northwest trending structural axes, strike-parallel brittle-ductile shear zones & faults and ovoid granitoids intrusions. Greenschist metamorphism is the most predominant within the Province. These greenstones are considered prospective for gold, nickel, REE, lithium and copper.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent 	Not applicable as drilling is not reported for this project

Criteria	JORC Code explanation	Commentary
	Person should clearly explain why this is the case.	
Data aggregation methods	, -	Reported assay intersections are length and density weighted. Significant intersections are determined using both qualitative (i.e. geological logging) and quantitative (i.e. lower cut-off) methods. For grade intersection of Li_2O , the nominal lower cut-off is 100 ppm Li_2O .
		Any high-grade intervals internal to broader zones of mineralisation are reported as included intervals. Any mineralisation with (usually) >100 ppm Li ₂ O maybe be grouped with the reported intervals for calculating significant intersections and the mineralisation is reported as an including intersection.
	reporting of metal equivalent values should be clearly stated.	No metal equivalent values are used for reporting exploration results.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Assay intersections are reported as down hole lengths. Handheld auger holes are planned as perpendicular as possible to intersect the target lithologies and geological targets so downhole lengths are usually interpreted to be near true width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	A prospect location map are shown in the body of relevant ASX Releases.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Reports on recent exploration can be found in ASX Releases that are available on our website at www.stgm.com.au: The exploration results reported are representative of the mineralisation style with grades and/or widths reported in a consistent manner.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): 	All material or meaningful data collected has been reported

Criteria	JORC Code explanation	Commentary
	geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or largescale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	A discussion of further exploration work underway is contained in the body of recent ASX Releases. Further exploration will be planned based on ongoing drill results, geophysical surveys and geological assessment of prospectivity.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling Rechniques channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	AC Sampling: All samples from the AC drilling collected through a cyclone and taken as 1n samples and placed into 1m interval sample piles. Sample piles was then sampled using a combination of 1m, 2m and 3m composites via spear method and collected in a numbered calico bag for laboratory assay. RC Sampling: All samples from the RC drilling collected through a cyclone and taken as 1n samples and placed into 1m interval sample piles. Sample piles was then sampled using a combination of 1m, 2m and 3m composites via spear method and collected in a numbered calico bag for laboratory assay.	
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	AC Sampling: Samples are taken on a one metre basis and collected using uniquely numbered calico bags. The cyclone is cleaned with compressed air after hole unless we sample or clays are encountered then the cyclone is opened and cleaned manually and with the aid of a compressed air gun. A blank, duplicate and standard sample is inserted at a rate of 1:50.
		Geological logging of AC chips is completed at site with representative chips being stored in drill chip trays. Downhole surveys were not conducted.
		The drill-hole collar locations are recorded using a hand-held GPS, which has ar accuracy of +/- 5m deemed as sufficient for the stage of exploration.
		RC Sampling:
		Samples are taken on a one metre basis and collected using uniquely numbered calico bags. The cyclone is cleaned with compressed air after hole unless we sample or clays are encountered then the cyclone is opened and cleaned manually and with the aid of a compressed air gun. A blank, duplicate and standard sample is inserted at a rate of 1:50.
		Geological logging of RC chips is completed at site with representative chips being stored in drill chip trays. Downhole surveys were conducted at an average interval of 30 metres or less when deviation is expected/experienced.
Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for		The drill-hole collar locations are recorded using a hand-held GPS, which has an accuracy of +/- 5m deemed as sufficient for the stage of exploration.
	AC Sampling:	
	Public Report.	A combination of 1m, 2m and 3m composite sample is taken from the bulk sample of AC chips that may weigh in excess of 40 kg. Each sample collected for assay typically weighs 2-3kg, and once dried, is prepared for the laboratory.
	work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was	All Samples were sent to Bureau Veritas Laboratory. Samples were prepared by pulverising to 75um and analysed by the multi acid digest ICP-MS & ICP-OES 52 elements method. The elements are: Ag, As, Be, Bi, Ce, Co, Cs, Cu, Dy, Er, Eu, Ga, Gd, Ho, In, La, Li, Lu, Mo, Nb, Nd, Ni, Pr, Pb, Rb, Sb, Sc, Sm, Sn, Ta, Tb, Te, Th, Tm, U, W, Y, Yb, Zn, Zr, Al, Ca, Cr, Fe, K, Mg, Mn, Na, P, S, Ti, V. The sample

fire assay'). In other cases more

explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual were digested with nitric, hydrochloric, hydrofluoric and perchloric acids to

Criteria	JORC Code explanation	Commentary
	commodities or mineralisation types (eg submarine nodules) may warrant	effect as near to total solubility of the sample as possible. Detection limits on elements ranging from 2ppm to 100ppm for mixed acid digest.
		Fire assay method was also conducted, samples were analysed to Au with a detection limit of 1ppb, Pt and Pd both with a detection limit of 5ppb.
		RC Sampling:
		A combination of 1m, 2m and 3m composite sample is taken from the bulk sample of RC chips that may weigh in excess of 40 kg. Each sample collected for assay typically weighs 2-3kg, and once dried, is prepared for the laboratory.
		All Samples were sent to Bureau Veritas Laboratory. Samples were prepared by pulverising to 75um and analysed by the multi acid digest ICP-MS & ICP-OES 52 elements method. The elements are: Ag, As, Be, Bi, Ce, Co, Cs, Cu, Dy, Er, Eu, Ga, Gd, Ho, In, La, Li, Lu, Mo, Nb, Nd, Ni, Pr, Pb, Rb, Sb, Sc, Sm, Sn, Ta, Tb, Te, Th, Tm, U, W, Y, Yb, Zn, Zr, Al, Ca, Cr, Fe, K, Mg, Mn, Na, P, S, Ti, V. The sample were digested with nitric, hydrochloric, hydrofluoric and perchloric acids to effect as near to total solubility of the sample as possible. Detection limits on elements ranging from 2ppm to 100ppm for mixed acid digest.
		Fire assay method was also conducted, samples were analysed to Au with a detection limit of 1ppb, Pt and Pd both with a detection limit of 5ppb.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diametre, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	Reverse Circulation (RC) and Aircore (AC) drilling was used to obtain 1-metre samples that were passed through a cyclone and collected in a bucket which was then emptied on the ground.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	AC Sampling: AC samples are visually checked for recovery, moisture and contamination. Geological logging is completed at site with representative AC chips stored in chip trays.
		RC Sampling: RC samples are visually checked for recovery, moisture and contamination. Geological logging is completed at site with representative RC chips stored in chip trays.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	AC Sampling: Samples are collected in a bucket and put into 1m piles on the ground. Geological logging of AC chips is completed at site with representative chips being stored in drill chip trays.
		RC Sampling: Samples are collected in a bucket and put into 1m piles on the ground. Geological logging of RC chips is completed at site with representative chips being stored in drill chip trays.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	To date, no sample recovery issues have yet been identified for both RC and AC drilling that would impact on potential sample bias in the regolith/bedrock profile or sampling methods.

Criteria	JORC Code explanation	Commentary
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	For both RC and AC drilling, each sample is recorded for the lithology, type and nature of the regolith/bedrock. The surface topography and type is recorded at the sample location. Logging of samples records lithology, mineralogy, mineralisation, structures (when possible), weathering, colour and other noticeable features. Chips were photographed in both dry and wet form.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	The logging is both qualitive and quantitative in nature, with sample recovery and volume being recorded,
	The total length and percentage of the relevant intersections logged.	All drill holes are geologically logged in full and selective samples are collected by the field XRF unit. The data relating to the elements analysed is used to determine further information regarding the detailed rock composition and to better guide sampling methodology.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	N/A
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Both RC and AC samples were collected in dry form. Samples are collected using spear form sample piles Geological logging of RC/AC chips is completed at site with representative chips being stored in drill chip trays.
	For all sample types, the nature,	AC Sampling: Sample preparation for AC chips follows a standard protocol.
	quality and appropriateness of the sample preparation technique.	The entire sample is pulverised to 75µm using LM5 pulverising mills. Samples are dried, crushed and pulverized to produce a homogenous representative subsample for analysis. A grind quality target of 90% passing 75µm is used.
		RC Sampling: Sample preparation for RC chips follows a standard protocol.
		The entire sample is pulverised to 75μm using LM5 pulverising mills. Samples are dried, crushed and pulverized to produce a homogenous representative subsample for analysis. A grind quality target of 90% passing 75μm is used.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Quality control procedures include submission of Certified Reference Materials (standards), duplicates and blanks with each sample batch. QAQC results are routinely reviewed to identify and resolve any issues.
		AC Sampling: Field QC procedures maximise representivity of AC samples and involve the use of certified reference material as assay standards, along with blanks. No duplicates were taken during the current AC programme.
		RC Sampling: Field QC procedures maximise representivity of RC samples and involve the use of certified reference material as assay standards, along with blanks. No duplicates were taken during the current AC programme.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	No duplicates were taken during the current RC and AC programme.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly represent mineralisation and associated geology based on the style of mineralisation, the thickness and consistency of the intersections and the sampling methodology.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The assay method and detection limits are appropriate for analysis of the elements required.

Criteria	JORC Code explanation	Commentary
	handheld XRF instruments, etc, the parametres used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	A handheld XRF instrument (Sciapps X-555 Spectrum Analyser) is used to provide an indicative assay of the geochemical sample onsite. One reading is taken per sample. The instruments are serviced and calibrated at least once a year. Field calibration of the XRF instrument using standards is periodically performed (daily).
		The handheld XRF results are only used for preliminary assessment and not for reporting of element compositions, prior to the receipt of assay results from the certified laboratory.
		DHEM: The surveys were conducted using the Digi Atlantis System and VTX-100 transmitter. The readings were recorded at 5m intervals with 1m infill down hole. The transmitter produced 96amps and recorded at a frequency of 0.5Hz.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks)	Laboratory QAQC involves the use of internal lab standards using certified reference material (CRMs), blanks and pulp duplicates as part of in-house procedures. The Company also submits a suite of CRMs and blanks.
	and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Sample preparation checks for fineness are performed by the laboratory to ensure the grind size of 90% passing 75μm is being attained.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections and assays are verified by the Company's Technical Director and Consulting Field Geologist.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary data is captured onto a laptop using acQuire software and includes geological logging, sample data and QA/QC information. This data, together with the assay data, is entered into the St George Mining central SQL database which is managed by external consultants.
	Discuss any adjustment to assay data.	No adjustments or calibrations will be made to any primary assay data
		collected for the purpose of reporting assay grades and mineralised intervals. For the geological analysis, standards and recognised factors may be used to calculate the oxide from assayed elements, or to calculate volatile free mineral levels in rocks.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	The drill hole locations are determined by using a handheld GPS system with an expected accuracy of +/-5m for easting, northing and elevation. This is considered adequate for the type and purpose of the surveys.
	Specification of the grid system used.	The grid system used is GDA94, MGA Zone 51.
	Quality and adequacy of topographic control.	Elevation data has been acquired using handheld GPS surveying at specific location across the project, including drill collars, and entered into the central database. A topographic surface has been created using this elevation data.
	Data spacing for reporting of Exploration Results.	The spacing and distribution of holes is not relevant to the drilling programs which are at the exploration stage rather than definition drilling.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The completed drilling at the Project is not sufficient to establish the degree of geological and grade continuity to support the definition of Mineral Resource and Reserves and the classifications applied under the 2012 JORC code.
	Whether sample compositing has been applied.	Both RC and AC sample compositing occurred over 1m to 3m intervals, using a spear on 1m sample piles and combined in a calico bag for a combined weight of approximately 2-3kg
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The drill holes are drilled to intersect the modelled mineralised zones at a near perpendicular orientation (unless otherwise stated). However, the orientation of key structures may be locally variable and any relationship to mineralisation has yet to be identified.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No orientation based sampling bias has been identified in the data to date.
Sample security	The measures taken to ensure sample security.	Chain of Custody is managed by the Company until samples pass to a duly certified assay laboratory for subsampling and assaying. The sample bags are stored on secure sites and delivered to the assay laboratory by the Company or a competent agent. When in transit, they are kept in locked premises. Transport logs have been set up to track the progress of samples. The chain of custody passes upon delivery of the samples to the assay laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques and procedures are regularly reviewed internally, as is the data.

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The Destiny Project is comprised of 10 granted Exploration Licences (E15/1831, E15/1915 and E15/1798, E15/1899, E15/1834, E15/1898, E15/1928, E15/1687, E15/1976, E15/1977 and E15/1927). St George has an option to acquire 7 of these tenements, with the other three already 100% owned by St George. No environmentally sensitive sites have been identified on the tenements. No known registered Heritage sites have been identified within the tenements. All 11 tenements are in good standing with no known impediments.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	Exploration in the broader Coolgardie region has historically targeted gold mineralisation form circa 1880s. These where surface and orogenic style gold deposits.
		More recently Mincor has conducted exploration targeting nickel and base metals in the 2000's including over the existing live tenements.
		Since then, no major exploration has taken place within the region.
		No previous exploration has targeted carbonatite hosted niobium/rare- earth elements, clay/shear zone hosted gold deposits and pegmatite hosted lithium deposits within the region. Limited Copper exploration was historically carried out in the most western area of the tenement package.
Geology	 Deposit type, geological setting and style of mineralization. 	St George is targeting a variety of commodities, including carbonatite hosted niobium/rare earth element deposits, clay/shear zone hosted gold and copper deposits, and pegmatite hosted Lithium deposits at the Destiny project.
		This is based on geophysical and geological interpretations of recently acquired modern datasets.
		The project lies within the Archaean age granite -greenstone terrane within the Coolgardie mineral district. The target greenstone stratigraphy within this domain is generally trending NNW and straddles the dominant Ida fault zone of the same orientation.
		These greenstone sequences are considered prospective for gold, nickel, REE, lithium and copper.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	Drill hole collar locations for both RC and AC drilling are shown in the maps and tables included in the body of the relevant ASX releases

Criteria	JORC Code explanation	Commentary
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. When gaggeets interports	Reported assay intersections are length and density weighted. Significant intersections are determined using both qualitative (i.e. geological logging) and quantitative (i.e. lower cut-off) methods. For grade intersection of copper, the nominal lower cut-off is 300ppm Cu.
	 Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any 	Any high-grade intervals internal to broader zones of mineralisation are reported as included intervals. Any mineralisation with (usually) >0.1% Cu are grouped with the reported intervals for calculating significant intersections and the mineralisation is reported as an including intersection.
	reporting of metal equivalent values should be clearly stated.	No metal equivalent values are used for reporting exploration results.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Assay intersections are reported as down hole lengths. Drill holes are planned as perpendicular as possible to intersect the target lithologies and geological targets so downhole lengths are usually interpreted to be near true width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	A prospect location map is shown in the body of relevant ASX Releases.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading	Reports on recent exploration can be found in ASX Releases that are available on our website at www.stgm.com.au: The exploration results reported are representative of the mineralisation style with grades and/or widths reported in a consistent manner.

Criteria	JORC Code explanation	Commentary
	reporting of Exploration Results.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All material or meaningful data collected has been reported
Further work	The nature and scale of planned further work (eg	A discussion of further exploration work underway is contained in the body of recent ASX Releases.
	tests for lateral extensions or depth extensions or large-scale step-out drilling). • Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further exploration will be planned based on ongoing drill results, geophysical surveys and geological assessment of prospectivity.

The following section is provided for compliance with requirements for the reporting of exploration results under the JORC Code, 2012 Edition.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Myuna Rocks Project

Criteria	JORC Code explanation	Commentary		
Sampling	Nature and quality of sampling (eg cut	AC Sampling:		
techniques	channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	All samples from the AC drilling collected through a cyclone and taken as 1m samples and placed into 1m interval sample piles. Sample piles was then sampled using a combination of 1m, 2m and 3m composites via spear method and collected in a numbered calico bag for laboratory assay.		
	Include reference to measures taken	AC Sampling:		
	to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Samples are taken on a one metre basis and collected using uniquely numbered calico bags. The cyclone is cleaned with compressed air after hole unless wet sample or clays are encountered then the cyclone is opened and cleaned manually and with the aid of a compressed air gun. A standard sample is inserted at a rate of 1:33 with blanks and standards inserted at a rate of 1:50.		
		Geological logging of AC chips is completed at site with representative chips being stored in drill chip trays. Downhole surveys were not conducted.		
		The drill-hole collar locations are recorded using a hand-held GPS, which has an accuracy of +/- 5m deemed as sufficient for the stage of exploration.		
	Aspects of the determination of	AC Sampling:		
	mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	A combination of 1m, 2m and 3m composite sample is taken from the bulk sample of AC chips that may weigh in excess of 40 kg. Each sample collected for assay typically weighs 2-3kg, and once dried, is prepared for the laboratory.		
		All Samples were sent to Bureau Veritas Laboratory. Samples were prepared by pulverising to 75um and analysed by Peroxide Fusion for the LCT Suite with ICP-MS & ICP-OES finish for the elements Ag, Al, As, Be, Bi, Ca, Cs, Cu, Fe, K, Li, Mg, Mo, Na, Nb, Pb, Rb, S, Sb, Sc, Si, Sn, Ta, Te, Ti, V, W, Zn. Detection limits on elements ranging from 2ppm to 100ppm for mixed acid digest.		
		Fire assay method was also conducted, samples were analysed to Au with a detection limit of 1ppb, Pt and Pd both with a detection limit of 5ppb.		
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diametre, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	Aircore (AC) drilling was used to obtain 1-metre samples that were passed through a cyclone and collected in a bucket which was then emptied on the ground.		

Criteria	JORC Code explanation	Commentary
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	AC Sampling: AC samples are visually checked for recovery, moisture and contamination. Geological logging is completed at site with representative AC chips stored in chip trays.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	AC Sampling: Samples are collected in a bucket and put into 1m piles on the ground. Geological logging of AC chips is completed at site with representative chips being stored in drill chip trays.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	To date, no sample recovery issues have yet been identified that would impact on potential sample bias in the regolith/bedrock profile or sampling methods.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Each sample is recorded for the lithology, type and nature of the regolith/bedrock. The surface topography and type is recorded at the sample location. Logging of samples records lithology, mineralogy, mineralisation, structures (when possible), weathering, colour and other noticeable features. Chips were photographed in both dry and wet form.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	The logging is both qualitive and quantitative in nature, with sample recovery and volume being recorded,
	The total length and percentage of the relevant intersections logged.	All drill holes are geologically logged in full and selective samples are collected by the field XRF unit. The data relating to the elements analysed is used to determine further information regarding the detailed rock composition and to help guide sampling intervals.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	N/A
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Samples were collected in dry form. Samples are collected using spear form sample piles Geological logging of AC chips is completed at site with representative chips being stored in drill chip trays.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	AC Sampling: Sample preparation for AC chips follows a standard protocol. The entire sample is pulverised to 75μm using LM5 pulverising mills. Samples are dried, crushed and pulverized to produce a homogenous representative subsample for analysis. A grind quality target of 90% passing 75μm is used.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Quality control procedures include submission of Certified Reference Materials (standards), duplicates and blanks with each sample batch. QAQC results are routinely reviewed to identify and resolve any issues.
		AC Sampling: Field QC procedures maximise representivity of AC samples and involve the use of certified reference material as assay standards, along with blanks and duplicates.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for	Duplicate samples were collected concomitantly on a ratio of 1:50

Criteria	JORC Code explanation	Commentary
	instance results for field duplicate/second-half sampling.	
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered to be appropriate to correctly represent mineralisation and associated geology based on the style of mineralisation, the thickness and consistency of the intersections and the sampling methodology.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The assay method and detection limits are appropriate for analysis of the elements required.
	For geophysical tools, spectrometres, handheld XRF instruments, etc, the parametres used in determining the analysis including instrument make and model, reading times, calibrations	A handheld XRF instrument (Sciapps X-555 Spectrum Analyser) is used to provide an indicative assay of the geochemical sample onsite. One reading is taken per sample. The instruments are serviced and calibrated at least once a year. Field calibration of the XRF instrument using standards is periodically performed (daily).
	factors applied and their derivation, etc.	The handheld XRF results are only used for preliminary assessment and not for reporting of element compositions, prior to the receipt of assay results from the certified laboratory.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision	Laboratory QAQC involves the use of internal lab standards using certified reference material (CRMs), blanks and pulp duplicates as part of in-house procedures. The Company also submits a suite of CRMs, field duplicates and blanks. Sample preparation checks for fineness are performed by the laboratory to
	have been established.	ensure the grind size of 90% passing 75μm is being attained.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections and assays are verified by the Company's Technical Director and Consulting Field Geologist.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary data is captured onto a laptop using acQuire software and includes geological logging, sample data and QA/QC information. This data, together with the assay data, is entered into the St George Mining central SQL database which is managed by external consultants.
	Discuss any adjustment to assay data.	No adjustments or calibrations will be made to any primary assay data collected for the purpose of reporting assay grades and mineralised intervals. For the geological analysis, standards and recognised factors may be used to calculate the oxide from assayed elements, or to calculate volatile free mineral levels in rocks.

Criteria	JORC Code explanation	Commentary
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	The drill hole locations are determined by using a handheld GPS system with an expected accuracy of +/-5m for easting, northing and elevation. This is considered adequate for the type and purpose of the surveys.
	Specification of the grid system used.	The grid system used is GDA94, MGA Zone 50.
	Quality and adequacy of topographic control.	Elevation data has been acquired using handheld GPS surveying at specific location across the project, including drill collars, and entered into the central database. A topographic surface has been created using this elevation data.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The spacing and distribution of holes is not relevant to the drilling programs which are at the exploration stage rather than definition drilling.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The completed drilling at the Project is not sufficient to establish the degree of geological and grade continuity to support the definition of Mineral Resource and Reserves and the classifications applied under the 2012 JORC code.
	Whether sample compositing has been applied.	Sample compositing occurred over 1m to 3m intervals, using a spear on 1m sample piles and combined in a calico bag for a combined weight of approximately 2-3kg
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The drill holes are drilled to intersect the modelled mineralised zones at a near perpendicular orientation (unless otherwise stated). However, the orientation of key structures may be locally variable and any relationship to mineralisation has yet to be identified.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No orientation based sampling bias has been identified in the data to date.
Sample security	The measures taken to ensure sample security.	Chain of Custody is managed by the Company until samples pass to a duly certified assay laboratory for subsampling and assaying. The sample bags are stored on secure sites and delivered to the assay laboratory by the Company or a competent agent. When in transit, they are kept in locked premises. Transport logs have been set up to track the progress of samples. The chain of custody passes upon delivery of the samples to the assay laboratory.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques and procedures are regularly reviewed internally, as is the data.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The Myuna Rocks Project is comprised of 5 granted Exploration Licences (E74/708, E74/709, E74/729, E74/789, E74/790). All are 100% owned by St George Mining Ltd. No environmentally sensitive sites have been identified on the tenements. No known registered Heritage sites have been identified within the tenements. All 5 tenements are in good standing with no known impediments.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Exploration in the broader Lake King region has historically targeted gold mineralisation from early 1970s. These where surface and orogenic style gold deposits. Previous explorers completed work which included mapping and surface sampling, drilling and geophysical surveys, historical data collection, compilation and re-interpretation. Since then, no major exploration has taken place within the region. No previous exploration has targeted pegmatite hosted lithium deposits
		within the region.
Geology	 Deposit type, geological setting and style of 	St George is targeting pegmatite hosted Lithium deposits at the Myuna Rocks Project.
	mineralization.	This is based on geophysical and geological interpretations of recently acquired modern datasets.
		The Myuna Rocks Project lies within the northern margins of the Archaean Ravensthorpe Greenstone which were deformed during the Albany-Fraser Orogeny.
		These greenstone sequences are considered prospective for gold, nickel, REE, lithium and copper.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract 	Drill hole collar locations for the AC drilling are shown in the maps and tables included in the body of the relevant ASX releases

Criteria	JORC Code explanation	Commentary
	from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	Reported assay intersections are length and density weighted. Significant intersections are determined using both qualitative (i.e. geological logging) and quantitative (i.e. lower cut-off) methods. For reported grade intersections of titanium, the nominal lower cut-off is 5,000 ppm Ti. Any high-grade intervals internal to broader zones of mineralisation are reported as included intervals. Any mineralisation with (usually) >10,000 ppm Ti are grouped with the reported intervals for calculating significant intersections and the mineralisation is reported as an including intersection.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Assay intersections are reported as down hole lengths. Drill holes are planned as perpendicular as possible to intersect the target lithologies and geological targets so downhole lengths are usually interpreted to be near true width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	A prospect location map is shown in the body of relevant ASX Releases.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Reports on recent exploration can be found in ASX Releases that are available on our website at www.stgm.com.au: The exploration results reported are representative of the mineralisation style with grades and/or widths reported in a consistent manner.
Other substantive exploration data	Other exploration data, if meaningful and material,	All material or meaningful data collected has been reported

Criteria	JORC Code explanation	Commentary
	should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or largescale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	A discussion of further exploration work underway is contained in the body of recent ASX Releases. Further exploration will be planned based on ongoing drill results, geophysical surveys and geological assessment of prospectivity.

Appendix 5B

Mining exploration entity or oil and gas exploration entity quarterly cash flow report

Name of entity	
St George Mining Limited	
ABN	Quarter ended ("current quarter")
21 139 308 973	31 December 2024

Cons	olidated statement of cash flows	Current quarter \$A'000	Year to date (6 months) \$A'000
1.	Cash flows from operating activities		
1.1	Receipts from customers		
1.2	Payments for		
	(a) exploration & evaluation	(1,099)	(1,904)
	(b) development	-	-
	(c) production	-	-
	(d) staff costs	(279)	(550)
	(e) administration and corporate costs	(159)	(240)
1.3	Dividends received (see note 3)	-	-
1.4	Interest received	23	50
1.5	Interest and other costs of finance paid	-	-
1.6	Income taxes paid	-	-
1.7	Government grants and tax incentives	-	-
1.8	Other (provide details if material)	31	(2)
1.9	Net cash from / (used in) operating activities	(1,483)	(2,646)

2.	Cas	h flows from investing activities	
2.1	Pay	ments to acquire or for:	
	(a)	entities -	
	(b)	tenements -	
	(c)	property, plant and equipment -	
((d)	exploration & evaluation -	
	(e)	investments -	
	(f)	other non-current assets -	

Conso	lidated statement of cash flows	Current quarter \$A'000	Year to date (6 months) \$A'000
2.2	Proceeds from the disposal of:		
	(a) entities	-	-
	(b) tenements	-	-
	(c) property, plant and equipment	-	-
	(d) investments	-	-
	(e) other non-current assets	-	-
2.3	Cash flows from loans to other entities	-	-
2.4	Dividends received (see note 3)	-	-
2.5	Other (provide details if material)	-	(11)
2.6	Net cash from / (used in) investing activities	-	(16)

3.	Cash flows from financing activities		
3.1	Proceeds from issues of equity securities (excluding convertible debt securities)	3,006	5,500
3.2	Proceeds from issue of convertible debt securities	-	-
3.3	Proceeds from exercise of options	-	-
3.4	Transaction costs related to issues of equity securities or convertible debt securities	(198)	(866)
3.5	Proceeds from borrowings	-	-
3.6	Repayment of borrowings	-	-
3.7	Transaction costs related to loans and borrowings	-	-
3.8	Dividends paid	-	-
3.9	Other (provide details if material)	-	-
3.10	Net cash from / (used in) financing activities	2,808	4,634

4.	Net increase / (decrease) in cash and cash equivalents for the period		
4.1	Cash and cash equivalents at beginning of period	3,167	2,520
4.2	Net cash from / (used in) operating activities (item 1.9 above)	(1,483)	(2,646)
4.3	Net cash from / (used in) investing activities (item 2.6 above)	-	(16)
4.4	Net cash from / (used in) financing activities (item 3.10 above)	2,808	4,634

Cons	colidated statement of cash flows	Current quarter \$A'000	Year to date (6 months) \$A'000
4.5	Effect of movement in exchange rates on cash held	-	-
4.6	Cash and cash equivalents at end of period	4,492	4,492

5.	Reconciliation of cash and cash equivalents at the end of the quarter (as shown in the consolidated statement of cash flows) to the related items in the accounts	Current quarter \$A'000	Previous quarter \$A'000
5.1	Bank balances	15	429
5.2	Call deposits	4,477	2,738
5.3	Bank overdrafts	-	-
5.4	Other (provide details)	-	-
5.5	Cash and cash equivalents at end of quarter (should equal item 4.6 above)	4,492	3,167

6.	Payments to related parties of the entity and their associates	Current quarter \$A'000
6.1	Aggregate amount of payments to related parties and their associates included in item 1	160
6.2	Aggregate amount of payments to related parties and their associates included in item 2	-
,	f any amounts are shown in items 6.1 or 6.2, your quarterly activity report must include a descript ayments.	ion of, and an explanation for,

7.	Financing facilities Note: the term "facility' includes all forms of financing arrangements available to the entity. Add notes as necessary for an understanding of the sources of finance available to the entity.	Total facility amount at quarter end \$A'000	Amount drawn at quarter end \$A'000
7.1	Loan facilities	-	-
7.2	Credit standby arrangements	-	-
7.3	Other (please specify)	-	-
7.4	Total financing facilities	-	-
7.5	Unused financing facilities available at quarter e	end	-
7.6	7.6 Include in the box below a description of each facility above, including the lender, interest maturity date and whether it is secured or unsecured. If any additional financing facilities entered into or are proposed to be entered into after quarter end, include a note providing of those facilities as well.		
	Not applicable.		

8.	Estimated cash available for future operating activities	\$A'000
8.1	Net cash from / (used in) operating activities (item 1.9)	(1,483)
8.2	(Payments for exploration & evaluation classified as investing activities) (item 2.1(d))	-
8.3	Total relevant outgoings (item 8.1 + item 8.2)	(1,483)
8.4	Cash and cash equivalents at quarter end (item 4.6)	4,492
8.5	Unused finance facilities available at quarter end (item 7.5)	-
8.6	Total available funding (item 8.4 + item 8.5)	4,492
8.7	Estimated quarters of funding available (item 8.6 divided by item 8.3)	3.03

Note: if the entity has reported positive relevant outgoings (ie a net cash inflow) in item 8.3, answer item 8.7 as "N/A". Otherwise, a figure for the estimated quarters of funding available must be included in item 8.7.

- 8.8 If item 8.7 is less than 2 quarters, please provide answers to the following questions:
 - 8.8.1 Does the entity expect that it will continue to have the current level of net operating cash flows for the time being and, if not, why not?

Answer:

Not applicable

8.8.2 Has the entity taken any steps, or does it propose to take any steps, to raise further cash to fund its operations and, if so, what are those steps and how likely does it believe that they will be successful?

Answer:

Not applicable

8.8.3 Does the entity expect to be able to continue its operations and to meet its business objectives and, if so, on what basis?

Answer:

Not applicable

Note: where item 8.7 is less than 2 quarters, all of questions 8.8.1, 8.8.2 and 8.8.3 above must be answered.

Compliance statement

- This statement has been prepared in accordance with accounting standards and policies which comply with Listing Rule 19.11A.
- 2 This statement gives a true and fair view of the matters disclosed.

Date: 31 January 2025

Authorised by: Sarah Shipway

Non-Executive Director/Company Secretary

(Name of body or officer authorising release – see note 4)

Notes

- 1. This quarterly cash flow report and the accompanying activity report provide a basis for informing the market about the entity's activities for the past quarter, how they have been financed and the effect this has had on its cash position. An entity that wishes to disclose additional information over and above the minimum required under the Listing Rules is encouraged to do so.
- 2. If this quarterly cash flow report has been prepared in accordance with Australian Accounting Standards, the definitions in, and provisions of, AASB 6: Exploration for and Evaluation of Mineral Resources and AASB 107: Statement of Cash Flows apply to this report. If this quarterly cash flow report has been prepared in accordance with other accounting standards agreed by ASX pursuant to Listing Rule 19.11A, the corresponding equivalent standards apply to this report.
- 3. Dividends received may be classified either as cash flows from operating activities or cash flows from investing activities, depending on the accounting policy of the entity.
- 4. If this report has been authorised for release to the market by your board of directors, you can insert here: "By the board". If it has been authorised for release to the market by a committee of your board of directors, you can insert here: "By the [name of board committee eg Audit and Risk Committee]". If it has been authorised for release to the market by a disclosure committee, you can insert here: "By the Disclosure Committee".
- 5. If this report has been authorised for release to the market by your board of directors and you wish to hold yourself out as complying with recommendation 4.2 of the ASX Corporate Governance Council's Corporate Governance Principles and Recommendations, the board should have received a declaration from its CEO and CFO that, in their opinion, the financial records of the entity have been properly maintained, that this report complies with the appropriate accounting standards and gives a true and fair view of the cash flows of the entity, and that their opinion has been formed on the basis of a sound system of risk management and internal control which is operating effectively.