1 April 2020 # ST GEORGE ACHIEVES BREAKTHROUGH RESULTS THAT SIGNIFICANTLY EXPAND NICKEL-COPPER SULPHIDE TARGETS AT MT ALEXANDER #### Magnetotelluric (MT) and Audio-magnetotelluric (AMT) survey delivers breakthrough results: - Very significant exploration potential is confirmed with MT/AMT survey successfully mapping structures and conductive stratigraphy to a depth of more than 3,000m from surface - These deep, mantle-tapping faults are textbook conduits for nickel-copper sulphides and typical of large nickel sulphide mineral systems - New conductive features have been identified at depth within the Investigators, West End and Fairbridge Prospects in areas yet to be tested by drilling - Potential extensions of the highly mineralised Investigators ultramafic have been identified below the current extent of drilling - Conductive structures and stratigraphy parallel to the Cathedrals Belt have been identified on Exploration Licence E39/548, to the north of the Cathedrals Belt - Modelling of the MT survey data is continuing with further results due next week - Revised drill programme being planned to test the new deeper targets #### Assays for MAD177 confirm high-grade nickel-copper-cobalt-PGE sulphide mineralisation: - Laboratory assays for metallurgical drill hole MAD177 have returned: - 10.5m @ 4.82% Ni, 1.67% Cu, 0.15% Co and 2.87 total g/t PGEs from 182.5m, including 4m @ 7.53% Ni, 2.47% Cu, 0.23% Co and 3.92 total g/t PGEs from 186m - Platinum group metals include high levels of Palladium and Rhodium 10.5m @ 2.33g/t Pd and 0.08g/t Rh including 4m @ 3.23g/t Pd and 0.1g/t Rh - Metallurgical testwork is continuing in Perth # Scoping study for potential mining operation continues to advance: - Phase 2 of environmental study planned for completion in Q2 2020 - Entech appointed as external geological consultant for the maiden mineral resource estimate for Mt Alexander Growth focused Western Australian nickel company St George Mining Limited (ASX: **SGQ**) ("**St George**" or "**the Company**") is pleased to announce breakthrough exploration results which have identified significant new exploration targets at its flagship Mt Alexander nickel-copper sulphide project, located in the northeastern Goldfields. An MT/AMT survey was completed at Mt Alexander earlier this month, designed to map structures and conductive rock types (including mafic/ultramafic intrusives) along two key sections of the Cathedrals Belt that are known to host nickel-copper sulphide mineralisation. The survey was also designed to identify repetitions of similar structures and stratigraphy in the underexplored tenements adjacent to the Cathedrals Belt. Interim results from the MT survey have delivered exciting new information on the presence and orientation of the prospective structures and potential mafic/ultramafic stratigraphy, opening up a new range of priority targets for nickel-copper sulphides. At the Investigators Prospect, data from the MT survey has clearly shown a conductive response that is coincident with the Investigators ultramafic where extensive high-grade mineralisation has already been discovered from near surface to more than 250m below surface; see Figures 1 and 2. The blue areas in Figures 1 and 2 recorded high resistivity and are interpreted to be granite. Areas of yellow and green recorded conductive responses indicative of conductive faults and mafic/ultramafic stratigraphy. The coincidence of the known shallow nickel-copper sulphides at Investigators with a strong conductive (yellow) response, supports the potential of other similar responses in the MT survey data to represent mineralised ultramafics. The MT survey data at Investigators indicates that the Investigators ultramafic has been potentially offset by faulting, but that a repetition of the ultramafic occurs below the offset and to the north. This area has never been drilled and could extend to a depth of more than 1,000m. Figure 1 – north-south cross section of the Cathedrals Belt (looking east) showing MT/AMT 2D conductivity data. The section is centred on the Investigators Prospect, an area with known nickel-copper hosting ultramafic intrusives. Areas of yellow and green are indicative of prospective structures and stratigraphy. The shallow nickel-copper sulphides already discovered at Investigators have recorded strong yellow (conductive) responses. Figure 2 – High resolution MT/AMT 2D conductivity section of Investigators looking east and showing interpreted faults (dashed black lines) which are interpreted to have offset the conductive stratigraphy down dip northwards of the known shallow Investigators mineralisation. The MT survey data also showed that conductive responses are present at depth at the Fairbridge Prospect, the West End Prospect and to the north of Investigators on tenement E39/548 (owned 100% by St George). These areas have also never been drilled. The modelling of the MT survey data is continuing with further results expected by early next week. Processing of the data will include sophisticated 3D inversion modelling, which will provide further definition and accuracy for mapping the stratigraphy and structures. The identification of new conductive responses in the MT data provides a strong targeting mechanism to locate additional nickel-copper sulphide deposits. The 2020 drill programme will be deferred until all MT survey data can be considered and revised drill targets can be designed by our technical team. The deferral of the drill programme will also provide an opportunity to plan a programme that addresses the developing restrictions related to the COVID-19 pandemic. #### John Prineas, St George Mining's Executive Chairman, said: "The results from the MT survey are a game-changer for exploration at the Mt Alexander Project. "We have already discovered high-grade nickel-copper sulphides at shallow depths across more than 5.5km of the Cathedrals Belt. "However, intrusive mineral systems like we have at the Cathedrals Belt will typically have significant mineralisation at depth. These potential larger deposits are likely to be at deeper levels than explored to date at the Cathedrals Belt and our challenge has been how to best target drilling to discover these deeper, undercover deposits. "The MT survey has gone a long way towards unlocking the geological model at the Cathedrals Belt by providing new and breakthrough insights into the stratigraphy and structural framework at depth. "We now have a guide to where the granites have disrupted the ultramafics, how the ultramafics have been folded and – most importantly – where the deeper deposits may be located. "We will revise the drill programme for Mt Alexander in light of this data and are very excited at the opportunity to test drill these new targets. "The COVID-19 pandemic has created many challenges for our community and for our industry. We will carefully navigate this evolving period of uncertainty to protect the health and safety of our team and service providers, and to keep St George strong. "We are undeterred in our commitment to deliver further exploration success at our projects and will be announcing more significant exploration initiatives over the coming weeks, including a revised drill programme for Mt Alexander and our first exploration results at the new Paterson Project where an airborne magnetic survey was completed this month. "The appointment of external geological consultants for a maiden resource estimate is another major step in the scoping study for the potential mining of the shallow deposits at the Cathedrals Belt. "We are aiming to deliver an economically robust start-up mine with very low up-front capital costs and a high-value product with exceptional payabilities for nickel, copper, cobalt and platinum group metals that include palladium, platinum and rhodium. The assays for MAD177 have again reminded us of the high quality of our mineralisation. "Long-term market demand for new high-grade nickel sulphide discoveries like Mt Alexander remains very strong and St George is exceptionally well positioned to take advantage of the economic bounce-back when the pandemic subsides." #### MT/AMT SURVEY - BREAKTHROUGH RESULTS UNLOCKING POTENTIAL AT DEPTH The MT/AMT survey was designed to map the geological structures and conductive stratigraphy at the Cathedrals Belt by measuring the earth's subsurface electrical conductivity from measurements of natural geomagnetic and geoelectric field variation at the Earth's surface. The survey at the Cathedrals Belt has provided data to depths of more than 5km from surface, with highest resolution data returned for up to 1.5km from surface. The east-west oriented survey line covered approximately 10km from the West End Prospect in the west to the Bullets Prospect in the east. In total, 25 stations were captured across the strike of the main Cathedrals Belt, but slightly to the north and down dip to best image below the current level of drilling. The survey also included 27 stations across a north-south line starting from south of the Investigators Prospect to the northern section of E39/548 – this is the tenement to the north of the Cathedrals Belt owned 100% by St George. In addition, 100m spaced AMT stations were also used over the Investigators Prospect to collect shallow high resolution data. Interim results have already identified new areas of prospective intrusive rocks and provided valuable insights into whether structures continue uniformly at depth or are folded, stacked or otherwise disrupted. This will provide enhanced exploration targeting and allow for the planning of drill holes with more certainty to deliver exploration success. Figure 3 illustrates the areas covered by the MT survey lines. An expansion of the MT survey is being considered to provide a further and more comprehensive analysis of the broader project area. Figure 3 – map of the Cathedrals Belt showing MT survey lines overlaying interpreted geology and magnetics (TMI RTP 1VD). #### **SCOPING STUDY – ADVANCING TO A MINE** St George has appointed Entech as its external geological consultant to estimate a maiden JORC-compliant mineral resource at the Mt Alexander Project. The scoping study will focus on assessing a potential mining operation that can be developed with very low capital costs and a simple open-pit mining operation. The resource estimate will initially focus on the Stricklands deposit – where thick massive nickel-copper sulphide mineralisation starts at 30m below surface – and which is considered to have the simplest potential mining operation among the four shallow deposits discovered so far across the Cathedrals Belt. Metallurgical testwork with Strategic Metallurgy in Perth is continuing. Testwork in Canada has been delayed due to travel and other restrictions. Six diamond holes are planned for Stricklands to provide further samples for ongoing metallurgical testwork. MAD177, the metallurgical drill hole at Investigators, returned assays of: | HOLEID | FROM | ТО | WIDTH | Ni_pct | Cu_pct | Co_pct | PGEs_gpt | |-----------|------|-------|-------|--------|--------|--------|----------| | MAD177 | 182 | 192.5 | 10.5 | 4.82 | 1.67 | 0.15 | 2.87 | | including | | | | | | | | | MAD177 | 186 | 190 | 4 | 7.53 | 2.47 | 0.23 | 3.92 | These assay results have again confirmed the exceptional nature of the Cathedrals Belt mineralisation. In addition to high grades of nickel and copper, the mineralisation comprises high-grade platinum group elements with high levels of Palladium and Rhodium – 10.5m @ 2.33g/t Pd and 0.08g/t Rh including 4m @ 3.23g/t Pd and 0.1g/t Rh – which we believe could deliver substantial value in a potential mining operation. Earthworks for the resource definition drill programme at Stricklands have been completed and drilling is expected to be concluded within six weeks of commencement. The start of drilling has been deferred until a decision on the broader drill programme for Mt Alexander is finalised and the implications of the evolving COVID-19 related restrictions are clarified. Figure 4 – map of Investigators showing the location of MAD177 together with untested DHEM plates and drilling overlaying SAMSON FLEM imagery (CH18). The large number of untested EM anomalies – together with the new deeper targets identified by the MT survey – could potentially add significant volumes to the known mineralisation at Investigators. #### **About the Mt Alexander Project:** The Mt Alexander Project is located 120km south-southwest of the Agnew-Wiluna Belt, which hosts numerous world-class nickel deposits. The Project comprises five granted exploration licences – E29/638, E29/548, E29/962, E29/954 and E29/972. The Cathedrals, Stricklands, Investigators and Radar nickel-copper-cobalt-PGE discoveries are located on E29/638, which is held in joint venture by St George Mining Limited (75%) and Western Areas Limited (25%). St George is the Manager of the Project, with Western Areas retaining a 25% non-contributing interest in the Project (in regard to E29/638 only) until there is a decision to mine. Authorised for release by the Board of St George Mining Limited. For further information, please contact: John Prineas Executive Chairman St George Mining Limited +61 411 421 253 john.prineas@stgm.com.au Peter Klinger Media and Investor Relations Cannings Purple +61 411 251 540 pklinger@canningspurple.com.au #### **Competent Person Statement:** The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Mr Dave O'Neill, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy. Mr O'Neill is employed by St George Mining Limited to provide technical advice on mineral projects, and he holds performance rights issued by the Company. Mr O'Neill has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr O'Neill consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. # The following section is provided for compliance with requirements for the reporting of exploration results under the JORC Code, 2012 Edition. # **Section 1 Sampling Techniques and Data** (Criteria in this section apply to all succeeding sections) | Criteria | JORC Code explanation | Commentary | |------------------------|--|---| | Sampling
techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. | Drilling programmes are completed by Reverse Circulation (RC) and Diamond Core drilling. Surface MT/AMT surveys were completed by Moombarriga Geophysics. | | | | Diamond Core Sampling: The sections of the core that are selected for assaying are marked up and then recorded on a sample sheet for cutting and sampling at the certified assay laboratory. Samples of HQ or NQ2 core are cut just to the right of the orientation line where available using a diamond core saw, with half core sampled lengthways for assay. | | | | $\it RCSampling:$ All samples from the RC drilling are taken as 1m samples for laboratory assay. | | | | MT/AMT Surveying: The surveys were conducted using the Phoenix MTU system and Metronix ADU07e system. The sensors were recorded at 500m intervals with 100m infill over the Investigators Prospect. | | | | Two survey lines were recorded, one N-S and one E-W line. The N-S line was centred on the Investigators Prospect and included the 100m infill AMT stations, while the E-W line was completed approx. 500m to the north of the Cathedrals belt to image the stratigraphy down dip of the known nickel-copper deposits. | | | | Appropriate QAQC samples (standards, blanks and duplicates) are inserted into the sequences as per industry best practice. Samples are collected using cone or riffle splitter. Geological logging of RC chips is completed at site with representative chips being stored in drill chip trays. | | | Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. | RC Sampling: Samples are taken on a one metre basis and collected using uniquely numbered calico bags. The remaining material for that metre is collected and stored in a green plastic bag marked with that specific metre interval. The cyclone is cleaned with compressed air after each plastic and calico sample bag is removed. If wet sample or clays are encountered then the cyclone is opened and cleaned manually and with the aid of a compressed air gun. A blank sample is inserted at the beginning of each hole, and a duplicate sample is taken every 50 th sample. A certified sample standard is also added according to geology, but at no more than 1:50 samples. | | | | Geological logging of RC chips is completed at site with representative chips being stored in drill chip trays. Downhole surveys of dip and azimuth are conducted using a single shot camera every 30m, and using a downhole Gyro when required, to detect deviations of the hole from the planned dip and azimuth. The drill-hole collar locations are recorded using a hand-held GPS, which has an accuracy of +/- 5m. All drill-hole collars will be surveyed to a greater degree of accuracy using a certified surveyor at a later date. | | | | Diamond Core Sampling: For diamond core samples, certified sample standards were added as every 25 th sample. Core recovery calculations are made through a reconciliation of the actual core and the driller's records. Downhole surveys of dip and azimuth were conducted using a single shot camera every 30m to detect deviations of the hole from the planned dip and azimuth. The drill-hole collar locations are recorded using a hand-held GPS, which has an accuracy of +/- 5m. | | Criteria | JORC Code explanation | Commentary | |--------------------------|--|---| | | Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eq | RC Sampling: A 1m composite sample is taken from the bulk sample of RC chips that may weigh in excess of 40 kg. Each sample collected for assay typically weighs 2-3kg, and once dried, is prepared for the laboratory as per the Diamond samples below. | | | 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | Diamond Core Sampling: Diamond core (both HQ and NQ2) is half-core sampled to geological boundaries no more than 1.5m and no less than 10cm. Samples less than 3kg are crushed to 10mm, dried and then pulverised to 75 μ m. Samples greater than 3kg are first crushed to 10mm then finely crushed to 3mm and input into the rotary splitters to produce a consistent output weight for pulverisation. | | | | Pulverisation produces a 40g charge for fire assay. Elements determined from fire assay are gold (Au), platinum (Pt) and palladium (Pd) with a 1ppb detection limit. To determine other PGE concentrations (Rh, Ru, Os, Ir) a 25g charge for nickel sulphide collect fire assay is used with a 1ppb detection limit. | | | | Other elements will be analysed using an acid digest and an ICP finish. These elements are: Ag, Al, As, Bi, Ca, Cd, Co, Cr, Fe, K, Li, Mg, Mn, Mo, Nb, Ni, P, Pb, S, Sb, Sn, Te, Ti, V, W, Zn. The sample is digested with nitric, hydrochloric, hydrofluoric and perchloric acids to effect as near to total solubility of the sample as possible. The sample is then analysed using ICP-AES or ICP-MS. | | | | LOI (Loss on Ignition) will be completed on selected samples to determine the percentage of volatiles released during heating of samples to 1000°C . | | Drilling
techniques | Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diametre, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is | Diamond Core Sampling: The collars of the diamond holes were drilled using RC drilling down through the regolith to the point of refusal or to a level considered geologically significant to change to core. The hole was then continued using HQ diamond core until the drillers determined that a change to NQ2 coring was required. | | | oriented and if so, by what method, etc). | The core is oriented and marked by the drillers. The core is oriented using ACT Mk II electric core orientation. | | | | RC Sampling: The RC drilling uses a 140 mm diametre face hammer tool. High capacity air compressors on the drill rig are used to ensure a continuously sealed and high pressure system during drilling to maximise the recovery of the drill cuttings, and to ensure chips remain dry to the maximum extent possible. | | Drill sample
recovery | Method of recording and assessing core and chip sample recoveries and results assessed. | Diamond Core Sampling: Diamond core recoveries are recorded during drilling and reconciled during the core processing and geological logging. The core length recovered is measured for each run and recorded which is used to calculate core recovery as a percentage. | | | | RC Sampling: RC samples are visually checked for recovery, moisture and contamination. Geological logging is completed at site with representative RC chips stored in chip trays. | | | Measures taken to maximise sample recovery and ensure representative nature of the samples. | RC Sampling: Samples are collected using cone or riffle splitter. Geological logging of RC chips is completed at site with representative chips being stored in drill chip trays. | | | | Diamond Core Sampling: Measures taken to maximise core recovery include using appropriate core diameter and shorter barrel length through the weathered zone, which at Cathedrals and Investigators is mostly <20m and Stricklands <40m depth. Primary locations for core loss in fresh rock are on geological contacts and structural zones, and drill techniques are adjusted accordingly, and if possible these zones are predicted from the geological modelling. | | Criteria | JORC Code explanation | Commentary | |---|---|--| | | Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | To date, no sample recovery issues have yet been identified that would impact on potential sample bias in the competent fresh rocks that host the mineralised sulphide intervals. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. | Geological logging is carried out on all drill holes with lithology, alteration, mineralisation, structure and veining recorded. | | | Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. | Logging of diamond core and RC samples records lithology, mineralogy, mineralisation, structures (core only), weathering, colour and other noticeable features. Core was photographed in both dry and wet form. | | | The total length and percentage of the relevant intersections logged. | All drill holes are geologically logged in full and detailed lithogeochemical information is collected by the field XRF unit. The data relating to the elements analysed is used to determine further information regarding the detailed rock composition. | | Sub-sampling
techniques and
sample
preparation | If core, whether cut or sawn and whether quarter, half or all core taken. | Diamond Core Sampling: Diamond core was drilled with HQ and NQ2 size and sampled as complete half core to produce a bulk sample for analysis. Intervals selected varied from 0.3 – 1m (maximum) The HQ and NQ2 core is cut in half length ways just to the right of the orientation line where available using a diamond core saw. All samples are collected from the same side of the core where practicable. | | | | Assay preparation procedures ensure the entire sample is pulverised to 75 microns before the sub-sample is taken. This removes the potential for the significant sub-sampling bias that can be introduced at this stage. | | | If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. | RC samples are collected in dry form. Samples are collected using cone or riffle splitter when available. Geological logging of RC chips is completed at site with representative chips being stored in drill chip trays. | | | For all sample types, the nature, quality and appropriateness of the sample preparation | RC Sampling: Sample preparation for RC chips follows a standard protocol. | | | technique. | The entire sample is pulverised to 75 μ m using LM5 pulverising mills. Samples are dried, crushed and pulverized to produce a homogenous representative sub-sample for analysis. A grind quality target of 90% passing 75 μ m is used. | | | Quality control procedures adopted for all sub-
sampling stages to maximise representivity of
samples. | Quality control procedures include submission of Certified Reference Materials (standards), duplicates and blanks with each sample batch. QAQC results are routinely reviewed to identify and resolve any issues. | | | | RC Sampling: Field QC procedures maximise representivity of RC samples and involve the use of certified reference material as assay standards, along with blanks, duplicates and barren washes. | | | | Diamond Core Sampling: Drill core is cut in half lengthways and the total half-core submitted as the sample. This meets industry standards where 50% of the total sample taken from the diamond core is submitted. | | Criteria | JORC Code explanation | Commentary | |---|--|---| | | Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. | Duplicate samples are selected during sampling. Samples comprise two quarter core samples for Diamond Core. Duplicate RC samples are captured using two separate sampling apertures on the splitter. | | | Whether sample sizes are appropriate to the grain size of the material being sampled. | The sample sizes are considered to be appropriate to correctly represent base metal sulphide mineralisation and associated geology based on: the style of mineralisation (massive and disseminated sulphides), the thickness and consistency of the intersections and the sampling methodology. | | Quality of
assay data and
laboratory
tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. | For RC sampling, a 30 gram sample will be fire assayed for gold, platinum and palladium. The detection range for gold is $1-2000$ ppbAu, and $0.5-2000$ ppb for platinum and palladium. This is believed to be an appropriate detection level for the levels of these elements within this specific mineral environment. However, should Au, Pt or Pd levels reported exceed these levels; an alternative assay method will be selected. | | | | All other metals will be analysed using an acid digest and an ICP finish. The sample is digested with nitric, hydrochloric, hydrofluoric and perchloric acids to effect as near to total solubility of the sample as possible. The solution containing samples of interest, including those that need further review, will then be presented to an ICP-OES for the further quantification of the selected elements. | | | | Diamond core samples are analysed for Au, Pt and Pd using a 40g lead collection fire assay; for Rh, Ru, Os, Ir using a 25g nickel sulphide collection fire assay; and for Ag, Al, As, Bi, Ca, Cd, Co, Cr, Fe, K, Li, Mg, Mn, Mo, Nb, Ni, P, Pb, S, Sb, Sn, Te, Ti, V, W, Zn using a four acid digest and ICP-AES or MS finish. The assay method and detection limits are appropriate for analysis of the elements required. | | | For geophysical tools, spectrometres, handheld XRF instruments, etc, the parametres used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. | MT/AMT: The surveys were conducted using the Phoenix MTU system and Metronix ADU07e system. The sensors were recorded at 500m intervals with 100m infill over the Investigators Prospect. XRF: A handheld XRF instrument (Olympus Innov-X Spectrum Analyser) is used to systematically analyse the drill core and RC sample piles onsite. One reading is taken per metre, however for any core samples with matrix or massive sulphide mineralisation then multiple samples are taken at set intervals per metre. The instruments are serviced and calibrated at least once a year. Field calibration of the XRF instrument using standards is periodically performed (usually daily). | | | | The handheld XRF results are only used for preliminary assessment and reporting of element compositions, prior to the receipt of assay results from the certified laboratory. | | | Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision | Laboratory QAQC involves the use of internal lab standards using certified reference material (CRMs), blanks and pulp duplicates as part of in-house procedures. The Company also submits a suite of CRMs, blanks and selects appropriate samples for duplicates. | | | have been established. | Sample preparation checks for fineness are performed by the laboratory to ensure the grind size of 90% passing 75 μ m is being attained. | | Verification of
sampling and
assaying | The verification of significant intersections by either independent or alternative company personnel. | Significant intersections are verified by the Company's technical staff. | | | The use of twinned holes. | No twinned holes have been planned for the current drill programme. | | Criteria | JORC Code explanation | Commentary | |--|--|--| | | Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. | Primary data is captured onto a laptop using acQuire software and includes geological logging, sample data and QA/QC information. This data, together with the assay data, is entered into the St George Mining central SQL database which is managed by external consultants. | | | Discuss any adjustment to assay data. | No adjustments or calibrations will be made to any primary assay data collected for the purpose of reporting assay grades and mineralised intervals. For the geological analysis, standards and recognised factors may be used to calculate the oxide form assayed elements, or to calculate volatile free mineral levels in rocks. | | Location of data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations | Drill holes and MT/AMT stations have been located and pegged using a DGPS system with an expected accuracy of +/-5m for easting, northing and elevation. | | | used in Mineral Resource estimation. | Downhole surveys are conducted using a single shot camera approximately every 30m or downhole Gyro during drilling to record and monitor deviations of the hole from the planned dip and azimuth. Post-drilling downhole gyroscopic surveys will be conducted, which provide more accurate survey results. | | | Specification of the grid system used. | The grid system used is GDA94, MGA Zone 51. | | | Quality and adequacy of topographic control. | Elevation data has been acquired using DGPS surveying at individual collar locations and entered into the central database. A topographic surface has been created using this elevation data. | | Data spacing
and
distribution | Data spacing for reporting of Exploration
Results. | The spacing and distribution of holes is not relevant to the drilling programs which are at the exploration stage rather than definition drilling. | | | Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. | The completed drilling at the Project is not sufficient to establish the degree of geological and grade continuity to support the definition of Mineral Resource and Reserves and the classifications applied under the 2012 JORC code. | | | Whether sample compositing has been applied. | No compositing has been applied to the exploration results. | | Orientation of
data in relation
to geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. | The drill holes are drilled to intersect the modelled mineralised zones at a near perpendicular orientation (unless otherwise stated). However, the orientation of key structures may be locally variable and any relationship to mineralisation has yet to be identified. | | | If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | No orientation based sampling bias has been identified in the data to date. | | Sample
security | The measures taken to ensure sample security. | Chain of Custody is managed by the Company until samples pass to a duly certified assay laboratory for subsampling and assaying. The RC sample bags are stored on secure sites and delivered to the assay laboratory by the Company or a competent agent. When in transit, they are kept in locked premises. Transport logs have been set up to track the progress of samples. | | Audits or
reviews | The results of any audits or reviews of sampling techniques and data. | Sampling techniques and procedures are regularly reviewed internally, as is data. To date, no external audits have been completed on the drilling programme. | # Section 2 Reporting of Exploration Results (Criteria listed in section 1 will also apply to this section where relevant) | Criteria | JORC Code explanation | Commentary | |---|---|--| | Mineral
Tenement and
Land Status | Type, name/reference number, location and ownership including agreements or material issues with third parties including joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. | The Mt Alexander Project is comprised of five granted Exploration Licences (E29/638, E29/548, E29/954, E29/962 and E29/972). Tenement E29/638 is held in Joint Venture between St George (75% interest) and Western Areas (25% interest). E29/638 and E29/548 are also subject to a royalty in favour of a third party that is outlined in the ASX Release dated 17 December 2015 (as regards E29/638) and the ASX release dated 18 September 2015 (as regards E29/548). | | | The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | No environmentally sensitive sites have been identified on the tenements. A registered Heritage site known as Willsmore 1 (DAA identification 3087) straddles tenements E29/548 and E29/638. All five tenements are in good standing with no known impediments. | | Exploration
Done by Other
Parties | Acknowledgment and appraisal of exploration by other parties. | Exploration on tenements E29/638 and E29/962 has been largely for komatiite-hosted nickel sulphides in the Mt Alexander Greenstone Belt. Exploration in the northern section of E29/638 (Cathedrals Belt) and also limited exploration on E29/548 has been for mafic/ultramafic intrusion related Ni-Cu-PGE sulphides. No historic exploration has been identified on E29/954 or E29/972. | | | | High grade nickel-copper-PGE sulphides were discovered at the Mt Alexander Project in 2008. Drilling was completed to test co-incident electromagnetic (EM) and magnetic anomalies associated with nickel-PGE enriched gossans in the northern section of current tenement E29/638. The drilling identified high grade nickel-copper mineralisation in granite-hosted ultramafic units and the discovery was named the Cathedrals Prospect. | | Geology | Deposit type, geological setting and style of mineralisation | The Mt Alexander Project is at the northern end of a western bifurcation of the Mt Ida Greenstones. The greenstones are bound to the west by the Ida Fault, a significant Craton-scale structure that marks the boundary between the Kalgoorlie Terrane (and Eastern Goldfields Superterrane) to the east and the Youanmi Terrane to the west. | | | | The Mt Alexander Project is prospective for further high-grade komatiite-hosted nickel-copper-PGE mineralisation (both greenstone and granite hosted) and also precious metal mineralisation (i.e. orogenic gold) that is typified elsewhere in the Yilgarn Craton. | | Drill hole
information | A summary of all information material to the understanding of the exploration results including tabulation of the following information for all Material drill holes: • Easting and northing of the drill hole collar • Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • Dip and azimuth of the hole • Down hole length and interception depth • Hole length | Drill hole collar locations are shown in the maps and tables included in the body of the relevant ASX releases. | | Data
aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high arades) and cut off grades are usually Material. | Reported assay intersections are length and density weighted. Significant intersections are determined using both qualitative (i.e. geological logging) and quantitative (i.e. lower cut-off) methods. | | | grades) and cut-off grades are usually Material and should be stated. | For massive sulphide intersections, the nominal lower cut-off is 2% for either nickel or copper. For disseminated, blebby and matrix sulphide intersections the nominal lower cut-off for nickel is 0.3%. | | Criteria | JORC Code explanation | Commentary | |---|--|---| | | Where aggregated intercepts incorporate short
lengths of high grade results and longer lengths
of low grade results, the procedure used for such | Any high-grade sulphide intervals internal to broader zones of sulphide mineralisation are reported as included intervals. | | | of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. | Any disseminated, matrix, brecciated or stringer sulphides with (usually) >1% nickel or copper on contact with massive sulphide mineralisation are grouped with the massive sulphides for calculating significant intersections and the massive sulphide mineralisation is reported as an including intersection. | | | The assumptions used for any reporting of metal equivalent values should be clearly stated. | No metal equivalent values are used for reporting exploration results. | | Relationship
between
mineralisation
widths and
intercept
lengths | These relationships are particularly important in the reporting of exploration results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect. | Assay intersections are reported as down hole lengths. Drill holes are planned as perpendicular as possible to intersect the target EM plates and geological targets so downhole lengths are usually interpreted to be near true width. | | iagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plane view of drill hole collar locations and appropriate sectional views. | A prospect location map, cross section and long section are shown in the body of relevant ASX Releases. | | Balanced
Reporting | Where comprehensive reporting of all Exploration Results is not practical, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. | Reports on recent exploration can be found in ASX Releases that are available on our website at www.stgm.com.au : The exploration results reported are representative of the mineralisation style with grades and/or widths reported in a consistent manner. | | Other
substantive
exploration
data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observation; geophysical survey results; geochemical survey results; bulk samples — size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | All material or meaningful data collected has been reported. | | Further Work | The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large — scale step — out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | A discussion of further exploration work underway is contained in the body of recent ASX Releases. Further exploration will be planned based on ongoing drill results, geophysical surveys and geological assessment of prospectivity. |